Imaging the tarsal plate: A Mini-Review

Authors

DOI:

https://doi.org/10.5384/sjovs.v14i2.145

Keywords:

meibomian glands, Meibomske kjertler (MG), meibomian glands dysfunction, MG-dysfunksjon, dry eye, tørre øyne, diagnostic imaging, diagnostisk avbildning, meibography, meibografi

Abstract

Imaging the tarsal plate and the meibomian glands (MG) grants new opportunities for ophthalmic practitioners who work in the field of the ocular surface and dry eye across the globe. The secretory role of MG plays a fundamental part in protecting the moisture in front of the eye surface by creating an active shield made of meibum (lipid) which prevents tear evaporation and causes dry eye. Evidence from the most popular Dry Eye Workshop reports (2007 and 2016) demonstrate that MG dysfunction is the first cause of evaporative dry eye which is also the most common cause of dry eye and ocular surface discomfort. Fortunately, during the last years, a plethora of new devices for MG observation, diagnosis and follow-up have been made available in the market. These devices range from invasive to minimally invasive, high to low-tech and from being expensive to low-cost. The objective of this mini-review is to condense the latest evidence in MG imaging by providing a narrative overview on the most common technologies plus some other newer aspects which might guide clinicians and researchers in the field of the ocular surface and dry eye.

Metrics

Metrics Loading ...

References

Abdelfattah, N., Dastiridou, N., Sadda, S., & Lee, O. (2015). Noninvasive imaging of tear film dynamics in eyes with ocular surface disease. Cornea, 34, S48–52.

Arita, R., Itoh, K., Inoue, K., & Amano, S. (2008). Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population. Ophthalmology, 115, 911–915.

Bizheva, K., Lee, P., Sorbara, L., Hutchings, N., & Simpson, T. (2010). In vivo volumetric imaging of the human upper eyelid with ultrahigh-resolution optical coherence tomography. Journal of Biomedical Optics, 15.

Bron, A., De Paiva, C., Chauhan, S., Bonini, S., Gabison, E., Jain, S., Knop, E., Markoulli, M., Ogawa, Y., Perez, V., Uchino, Y., Yokoi, N., Zoukhri, D., & Sullivan, D. (2017). TFOS DEWS II pathophysiology report. Ocular Surface, 15, 438–510.

Chen, X., Utheim Ø, A., Xiao, J., Adil, M. Y., Stojanovic, A., Tashbayev, B., Jensen, J. L., & Utheim, T. P. (2017). Meibomian gland features in a Norwegian cohort of patients with primary Sjögren’s syndrome. PLoS One, 12(9), e0184284. https://doi.org/10.1371/journal.pone.0184284

Chew, C. K., Jansweijer, C., Tiffany, J. M., Dikstein, S., & Bron, A. J. (1993). An instrument for quantifying meibomian lipid on the lid margin: The Meibometer. Current Eye Research, 12, 247–254.

Ciężar, K., & Pochylski, M. (2020). 2D Fourier transform for global analysis and classification of meibomian gland images. The Ocular Surface, 18(4), 865–870. https://doi.org/10.1016/j.jtos.2020.09.005

Craig, J., Nichols, K., Akpek, E., Caffery, B., Dua, H., Joo, C., Liu, Z., Nelson, J., Nichols, J., Tsubota, K., & Stapleton, F. (2017). TFOS DEWS II definition and classification report. Ocular Surface, 15, 276–283.

De Silva, M. E. H., Zhang, A. C., Karahalios, A., Chinnery, H. R., & Downie, L. E. (2017). Laser scanning in vivo confocal microscopy (IVCM) for evaluating human corneal sub-basal nerve plexus parameters: Protocol for a systematic review. BMJ Open, 7.

García-Marqués, J. V., García-Lázaro, S., Martínez-Albert, N., & Cervinño, A. (2021). Meibomian glands visibility assessment through a new quantitative method. Graefe’s Archive for Clinical and Experimental Ophthalmology, 259, 1323–1331.

García-Resúa, C., Pena-Verdeal, H., Giráldez, M. J., & Yebra-Pimentel, E. (2017). Clinical relationship of meibometry with ocular symptoms and tear film stability. Contact Lens and Anterior Eye, 40(6), 408–416. https://doi.org/10.1016/j.clae.2017.07.003

Gulmez Sevim, D., Gumus, K., & Unlu, M. (2020). Reliable, noncontact imaging tool for the evaluation of meibomian gland function: Sirius meibography. Eye Contact Lens, 46 Suppl 2, S135–s140. https://doi.org/10.1097/icl.0000000000000651

Hassan, A., F.and Bhatti, Desai, R., & Barua, A. (2019). Analysis from a year of increased cases of Acanthamoeba Keratitis in a large teaching hospital in the UK. Contact Lens and Anterior Eye, 42, 506–511.

Hwang, J., Dermer, H., & Galor, A. (2021). Can in vivo confocal microscopy differentiate between sub-types of dry eye disease? a review. Clinical & Experimental Ophthalmology, 49, 373–387.

Kara, Ö., & Dereli Can, G. (2021). Topographic and specular microscopic evaluation of cornea and meibomian gland morphology in children with isolated growth hormone deficiency. International Ophthalmology, 41(8), 2827–2835. https://doi.org/10.1007/s10792-021-01839-5

Knop, E., Knop, N., Millar, T., Obata, H., & Sullivan, D. (2011). The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on Anatomy, Physiology, and Pathophysiology of the Meibomian Gland. Investigative Ophthalmology and Visual Science, 52, 1938–1978.

Kobayashi, A., Yoshita, T., & Sugiyama, K. (2005). In vivo findings of the bulbar/palpebral conjunctiva and presumed meibomian glands by laser scanning confocal microscopy. Cornea, 24, 985–988.

Koprowski, R., Tian, L., & Olczyk, P. (2017). A clinical utility assessment of the automatic measurement method of the quality of meibomian glands. BioMedical Engineering OnLine, 16(1), 82. https://doi.org/10.1186/s12938-017-0373-4

Koprowski, R., Wilczyński, S., Olczyk, P., Nowińska, A., Węglarz, B., & Wylęgała, E. (2016). A quantitative method for assessing the quality of meibomian glands. Computers in Biology and Medicine, 75, 130–8. https://doi.org/10.1016/j.compbiomed.2016.06.001

Lee, J. S., Jun, I., Kim, E. K., Seo, K. Y., & Kim, T. I. (2020). Clinical accuracy of an advanced corneal topographer with tear-film analysis in functional and structural evaluation of dry eye disease. Seminars in Ophthalmology, 35(2), 134–140. https://doi.org/10.1080/08820538.2020.1755321

Lee, S. M., Park, I., Goo, Y. H., Choi, D., Shin, M. C., Kim, E. C., Alkwikbi, H. F., Kim, M. S., & Hwang, H. S. (2019). Validation of alternative methods for detecting meibomian gland dropout without an infrared light system: Red filter for simple and effective meibography. Cornea, 38(5), 574–580. https://doi.org/10.1097/ico.0000000000001892

Lemp, M. (2007). Methodologies to diagnose and monitor dry eye disease: Report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocular Surface, 5, 108–152.

Leonardi, A., Carrao, G., Mudugno, R. L., Rossomando, V., Scalora, T., Lazzarini, D., & Calò, L. (2020). Cornea verticillata in Fabry disease: A comparative study between slit-lamp examination and in vivo corneal confocal microscopy. British Journal of Ophthalmology, 104, 718–722.

Lin, X., Fu, Y., Li, L., Chen, C., Chen, X., Mao, Y., Lian, H., Yang, W., & Dai, Q. (2020). A novel quantitative index of meibomian gland dysfunction, the meibomian gland tortuosity. Translational Vision Science and Technology, 9(9), 34. https://doi.org/10.1167/tvst.9.9.34

Maruoka, S., Tabuchi, H., Nagasato, D., Masumoto, H., Chikama, T., Kawai, A., Oishi, N., Maruyama, T., Kato, Y., Hayashi, T., & Katakami, C. (2020). Deep neural network-based method for detecting obstructive meibomian gland dysfunction with in vivo laser confocal microscopy. Cornea, 39(6), 720–725. https://doi.org/10.1097/ico.0000000000002279

Maskin, S. L., & Alluri, S. (2020). Meibography guided intraductal meibomian gland probing using real-time infrared video feed. British Journal of Ophthalmology, 104(12), 1676–1682. https://doi.org/10.1136/bjophthalmol-2019-315384

Maskin, S. L., & Testa, W. R. (2018). Infrared video meibography of lower lid meibomian glands shows easily distorted glands: Implications for longitudinal assessment of atrophy or growth using lower lid meibography. Cornea, 37(10), 1279–1286. https://doi.org/10.1097/ico.0000000000001710

Mathers, W. D., Daley, T., & Verdick, R. (1994). Video imaging of the meibomian gland. Archives of Ophthalmology, 112, 448–449.

Matsumoto, Y., Sato, E. A., Ibrahim, O. M., Dogru, M., & Tsubota, K. (2008). The application of in vivo laser confocal microscopy to the diagnosis and evaluation of meibomian gland dysfunction. Molecular Vision, 14, 1263–1271.

McCulley, J. P., & Shine, W. E. (2003). Meibomian gland function and the tear lipid layer. Ocular Surface, 1, 97–106.

Napoli, P. E., Coronella, F., Satta, G. M., Iovino, C., Sanna, R., & Fossarello, M. (2016). A simple novel technique of infrared meibography by means of spectral-domain optical coherence tomography: A cross-sectional clinical study. PLoS One, 11(10), e0165558. https://doi.org/10.1371/journal.pone.0165558

Nelson, J. D., Shimazaki, J., Benitez-Del-Castillo, J. M., Craig, J. P.,

McCulley, J. P., Den, S., & Foulks, G. N. (2011). The international workshop on meibomian gland dysfunction: Report of the definition and classification subcommittee. Investigative Ophthalmology & Visual Science, 52, 1930–1937.

Nichols, J. J., Bernsten, D. A., Mitchel, G. L., & Nichols, K. K. (2005). An assessment of grading scales for meibography images. Cornea, 24, 382–388.

Osae, E. A., Ablorddepey, R. K., Horstmann, J., Kumah, D. B., & Steven, P. (2018). Assessment of meibomian glands using a custom-made meibographer in dry eye patients in Ghana. BMC Ophthalmology, 18(1), 201. https://doi.org/10.1186/s12886-018-0869-0

Park, J., Kim, J., Lee, H., Park, M., & Baek, S. (2018). Functional and structural evaluation of the meibomian gland using a LipiView interferometer in thyroid eye disease. Canadian Journal of Ophthalmology, 53(4), 373–379. https://doi.org/10.1016/j.jcjo.2017.11.006

Pflugfelder, S. C., Tseng, S. C., Sanabria, O., Kell, H., Garcia, C. G., Felix, C., Feuer, W., & Reis, B. L. (1998). Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea, 17, 38–56.

Potsaid, B., Baumann, B., Huang, D., Barry, S., Cable, A. E., Schuman, J. S., Duker, J. S., & Fujimoto, J. G. (2010). Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Optics Express, 18, 20029–20048.

Pult, H., & Nichols, J. J. (2012). A review of meibography. Optometry and Vision Science, 89, E760–9.

Randon, M., Aragno, V., Abbas, R., Liang, H., Labbé, A., & Baudouin, C. (2019). In vivo confocal microscopy classification in the diagnosis of meibomian gland dysfunction. Eye (Lond), 33(5), 754–760.

https://doi.org/10.1038/s41433-018-0307-9

Recchioni, A., Siso-Fuertes, I., Hartwig, A., Hamid, A., Shortt, A. J., Morris, R., Vaswani, S., Dermott, J., Cervine, A., Wolffsohn, J. S., & O’Donnel, C. (2020). Short-term impact of FS-LASIK and SMILE on dry eye metrics and corneal nerve morphology. Cornea.

Shehzad, D., Gorcuyeva, S., Dag, T., & Bozkurt, B. (2019). Novel application software for the semi-automated analysis of infrared meibography images. Cornea, 38(11), 1456–1464. https://doi.org/10.1097/ico.0000000000002110

Tapie, R. (1977). Etude biomicroscopique des glandes de meibomius. Venkateswaran, N., Galor, A., Wang, J., & Karp, C. L. (2018). Optical coherence

tomography for ocular surface and corneal diseases: A review. Eye and Vision, 5.

Wang, D. H., Yao, J., & Liu, X. Q. (2020). Comparison of two measurements for the lower lid margin thickness: Vernier micrometer and anterior segment optical coherence tomography. International Ophthalmology, 40(12), 3223–3232. https://doi.org/10.1007/s10792-020-01505-2

Wong, S., Srinivasan, S., Murphy, P. J., & Jones, L. (2019). Comparison of meibomian gland dropout using two infrared imaging devices. Contact Lens and Anterior Eye, 42(3), 311–317. https://doi.org/10.1016/j.clae.2018.10.014

Wu, Y., Li, H., Tang, Y., & Yan, X. (2017). Morphological evaluation of meibomian glands in children and adolescents using noncontact infrared meibography. Journal of Pediatric Ophthalmology & Strabismus, 54(2), 78–83. https://doi.org/10.3928/01913913-20160929-03

Yin, Y., & Gong, L. (2019). The quantitative measuring method of meibomian gland vagueness and diagnostic efficacy of meibomian gland index combination. Acta Ophthalmologica, 97(3), e403–e409. https://doi.org/10.1111/aos.14052

Yokoi, N., Komoro, A., Yamada, H., Maruyama, K., & Kinoshita, S. (2007). A newly developed video-meibography system featuring a newly designed probe. Japanese Joural of Ophthalmology, 51, 53–56.

Yoo, Y. S., Na, K. S., Byun, Y. S., Shin, J. G., Lee, B. H., Yoon, G., Eom, T. J., & Joo, C. K. (2017). Examination of gland dropout detected on infrared meibography by using optical coherence tomography meibography. The Ocular Surface, 15 (1), 130–138.e1. https://doi.org/10.1016/j.jtos.2016.10.001

Zhao, H., Chen, J. Y., Wang, Y. Q., Lin, Z. R., & Wang, S. (2016). In vivo confocal microscopy evaluation of meibomian gland dysfunction in dry eye patients with different symptoms. Chinese Medical Journal, 129(21), 2617–2622. https://doi.org/10.4103/0366-6999.192782

Zhou, N., Edwards, K., Colorado, L. H., & Schmid, K. L. (2020). Development of feasible methods to image the eyelid margin using in vivo confocal microscopy. Cornea, 39(10), 1325–1333. https://doi.org/10.1097/ico.0000000000002347

Zhou, S., & Robertson, D. M. (2018). Wide-field in vivo confocal microscopy of meibomian gland acini and rete ridges in the eyelid margin. Investigative Ophthalmology & Visual Science, 59(10), 4249–4257. https://doi.org/10.1167/iovs.18-24497

Downloads

Published

2021-12-31

How to Cite

Recchioni, A. (2021). Imaging the tarsal plate: A Mini-Review. Scandinavian Journal of Optometry and Visual Science, 14(2), 1–7. https://doi.org/10.5384/sjovs.v14i2.145

Issue

Section

Review Article