Quality Assurance of Application of AI and Machine Learning on Art and Cultural Heritage – Opportunities and Challenges for Future Art History
Abstract
AI advancements enable new art-historical research tools, like OpenAI’s GPT-4 image-to-text function. Emerging cross-modal translation models can link texts, images, and more. Quality assurance in digitising art sources and training AI models is crucial. Concerns include source origin, content curation, presupposed image models, and potential cultural bias. It is essential for art historians to influence digitisation and AI data processes to ensure quality research when using AI-based tools.
Publicerad
2024-04-03
Nummer
Sektion
Det digitala och det globala
Licens
Copyright (c) 2024 Jan von Bonsdorff
Det här verket är licensierat under en Creative Commons Erkännande 4.0 Internationell-licens.