Refractive trends in 15-year-old adolescents at optometric practices in southern Sweden between 2007 and 2020
DOI:
https://doi.org/10.15626/sjovs.v16i1.3480Keywords:
myopia, Adolescents, frequencyAbstract
The purpose of this study was to analyse the distribution of refractive errors in 15-year-old adolescents at optometric practices in southern Sweden between 2007 and 2020. Refractive data were collected retrospectively from clinical records in five optometric practices in southern Sweden. The inclusion criteria were individuals visiting the practice at an age of 15 years between 2007 and 2020. The refractive errors were classified by the spherical equivalent (SE) (sphere + 1⁄2 cylinder) as follows: myopia (SE ≤ -0.5 D), hyperopia (SE ≥ 0.5 D), emmetropia (-0.5 > SE < 0.5 D). The astigmatism axis (-1.5 DC) was analysed as with-the-rule, against-the-rule and oblique according to traditional methods. To examine trends, the average refraction and distribution of refractive errors were compared between two selected time periods, 2007–2013 and 2014–2020. During the time frame 500 adolescents aged 15 years were examined in the selected optometric practices. Myopia was found in 34%, emmetropia in 35% and hyperopia in 31%. Among 37 individuals with astigmatism, the most common axis was with- the-rule (41%), followed by oblique (32%) and against-the-rule (27%). No significant differences could be found in the distribution of different refractive errors between the periods 2007–2013 and 2014–2020. Nor could any significant difference in average refraction be found. In contrast to the expected global rise in myopia as predicted by WHO and the high prevalence of myopia reported in some parts of the world, we could not find convincing changes in distribution between myopia and hyperopia in this cohort of Swedish adolescents.
Metrics
References
Cao, K., Wan, Y., Yusufu, M., & Wang, N. (2020). Significance of outdoor time for myopia prevention: A systematic review and meta-analysis based on randomized controlled trials. Ophthalmic Research, 63(2), 97–105. https://doi.org/10.1159/000501937 DOI: https://doi.org/10.1159/000501937
Chua, S. Y., Sabanayagam, C., Cheung, Y.-B., Chia, A., Valenzuela, R. K., Tan, D., Wong, T.-Y., Cheng, C.-Y., & Saw, S.-M. (2016). Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic and Physiological Optics, 36(4), 388–394. https://doi.org/10.1111/opo.12305 DOI: https://doi.org/10.1111/opo.12305
COMET Group. (2013). Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Investigative Ophthalmology & Visual Science, 54(13), 7871. https://doi.org/10.1167/iovs.13-12403 DOI: https://doi.org/10.1167/iovs.13-12403
Demir, P., Baskaran, K., Theagarayan, B., Gierow, P., Sankaridurg, P., & Macedo, A. F. (2021). Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Clinical and Experimental Optometry, 104(5), 595–601. https://doi.org/10.1080/08164622.2021.1878833 DOI: https://doi.org/10.1080/08164622.2021.1878833
French, A. N., Morgan, I. G., Mitchell, P., & Rose, K. A. (2013). Risk factors for incident myopia in Australian schoolchildren: The Sydney adolescent vascular and eye study. Ophthalmology, 120(10), 2100–2108. https://doi.org/10.1016/j.ophtha.2013.02.035 DOI: https://doi.org/10.1016/j.ophtha.2013.02.035
Grönlund, M. A., Andersson, S., Aring, E., Hård, A.-L., & Hellström, A. (2006). Ophthalmological findings in a sample of Swedish children aged 4–15 years. Acta Ophthalmologica Scandinavica, 84(2), 169–176. https://doi.org/10.1111/j.1600-0420.2005.00615.x DOI: https://doi.org/10.1111/j.1600-0420.2005.00615.x
Haarman, A. E., Enthoven, C. A., Tideman, J. W. L., Tedja, M. S., Verhoeven, V. J., & Klaver, C. C. (2020). The complications of myopia: A review and meta-analysis. Investigative Ophthalmology & Visual Science, 61(4), 49–49. https://doi.org/10.1167/iovs.61.4.49 DOI: https://doi.org/10.1167/iovs.61.4.49
Hagen, L. A., Gjelle, J. V. B., Arnegard, S., Pedersen, H. R., Gilson, S. J., & Baraas, R. C. (2018). Prevalence and possible factors of myopia in Norwegian adolescents. Scientific Reports, 8(1), 13479. https://doi.org/10.1038/s41598-018-31790-y DOI: https://doi.org/10.1038/s41598-018-31790-y
Hansen, M. H., Hvid-Hansen, A., Jacobsen, N., & Kessel, L. (2021). Myopia prevalence in Denmark–a review of 140 years of myopia research. Acta Ophthalmologica, 99(2), 118–127. https://doi.org/10.1111/aos.14562 DOI: https://doi.org/10.1111/aos.14562
Holden, B. A., Fricke, T. R., Wilson, D. A., Jong, M., Naidoo, K. S., Sankaridurg, P., Wong, T. Y., Naduvilath, T. J., & Resnikoff, S. (2016). Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology, 123(5), 1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006 DOI: https://doi.org/10.1016/j.ophtha.2016.01.006
Hrynchak, P. K., Mittelstaedt, A., Machan, C. M., Bunn, C., & Irving, E. L. (2013). Increase in myopia prevalence in clinic-based populations across a century. Optometry and Vision Science, 90(11), 1331–1341. https://doi.org/10.1097/OPX.0000000000000069 DOI: https://doi.org/10.1097/OPX.0000000000000069
Hu, Y. Y., Wu, J. F., Lu, T. L., Wu, H., Sun, W., Wang, X. R., Bi, H. S., & Jonas, J. B. (2015). Effect of cycloplegia on the refractive status of children: The Shandong children eye study. PLoS One, 10(2), e0117482. https://doi.org/10.1371/journal.pone.0117482 DOI: https://doi.org/10.1371/journal.pone.0117482
Huang, H.-M., Chang, D. S.-T., & Wu, P.-C. (2015). The association between near work activities and myopia in children—a systematic review and meta-analysis. PloS One, 10(10), e0140419. https://doi.org/10.1371/journal.pone.0140419 DOI: https://doi.org/10.1371/journal.pone.0140419
Jacobsen, N., Jensen, H., & Goldschmidt, E. (2007). Prevalence of myopia in Danish conscripts. Acta Ophthalmologica Scandinavica, 85(2), 165–170. https://doi.org/10.1111/j.1600-0420.2006.00789.x DOI: https://doi.org/10.1111/j.1600-0420.2006.00789.x
Kearney, S., Strang, N. C., Lewsey, J., Azuara-Blanco, A., & Jonuscheit, S. (2022). Socio-economic differences in accessing NHS spectacles amongst children with differing refractive errors living in Scotland. Eye, 36(4), 773–780. https://doi.org/10.1038/s41433-021-01536-8 DOI: https://doi.org/10.1038/s41433-021-01536-8
Kiefer, A. K., Tung, J. Y., Do, C. B., Hinds, D. A., Mountain, J. L., Francke, U., & Eriksson, N. (2013). Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genetics, 9(2), e1003299. https://doi.org/10.1371/journal.pgen.1003299 DOI: https://doi.org/10.1371/journal.pgen.1003299
Lanca, C., & Saw, S.-M. (2020). The association between digital screen time and myopia: A systematic review. Ophthalmic and Physiological Optics, 40(2), 216–229. https://doi.org/10.1111/opo.12657 DOI: https://doi.org/10.1111/opo.12657
Longwill, S., Moore, M., Flitcroft, D. I., & Loughman, J. (2022). Using electronic medical record data to establish and monitor the distribution of refractive errors. Journal of Optometry, 15, S32–S42. https://doi.org/j.optom.2022.09.001 DOI: https://doi.org/10.1016/j.optom.2022.09.001
Lundberg, K., Suhr Thykjær, A., Søgaard Hansen, R., Vestergaard, A. H., Jacobsen, N., Goldschmidt, E., Lima, R. A., Peto, T., Wedderkopp, N., & Grauslund, J. (2018). Physical activity and myopia in Danish children — The CHAMPS Eye Study. Acta Ophthalmologica, 96(2), 134–141. https://doi.org/10.1111/aos.13513 DOI: https://doi.org/10.1111/aos.13513
OFCOM. (2022). Children and parents: Media use and attitudes report 2022. https://www.ofcom.org.uk/__data/assets/pdf_file/0024/234609/childrens-media-use-and-attitudes-report-2022.pdf
Pärssinen, O. (2012). The increased prevalence of myopia in Finland. Acta Ophthalmologica, 90(6), 497–502. https://doi.org/10.1111/j.1755-3768.2011.02210.x DOI: https://doi.org/10.1111/j.1755-3768.2011.02210.x
Qin, Z., Peng, T., Zhang, Z., Lou, J., Wang, C., Deng, R., Xu, M., Yu, X., & Chen, W. (2022). Myopia progression and stabilization in school-aged children with single-vision lenses. Acta Ophthalmologica, 100(4), e950–e956. https://doi.org/10.1111/aos.15038 DOI: https://doi.org/10.1111/aos.15038
Queirós, A., Ferrer-Blasco, T., Jorge, J., Matos, S. C. P. d., González-Méijome, J. M., Cerviño, A., & Montés-Micó, R. (2009). Prevalence of refractive conditions in the general population attending eye care clinics in the north of portugal. http://repositorium.sdum.uminho.pt/handle/1822/8876
SCB. (2021). Folkmängd efter region, ålder, födelseland och år. http://www.statistikdatabasen.scb.se
Statistics Sweden. (2017). Barn motionerar trots mycket skärmtid. https: //www.scb.se/hitta-statistik/artiklar/2017/Barn-motionerar-trots-mycket-skarmtid/
Statistics Sweden. (2019). Barns ekonomi och materiella resurser efter indikator, redovisningsgrupp och kön. Andelar i procent. År 2008–2018. https://www.statistikdatabasen.scb.se
Tedja, M. S., Wojciechowski, R., Hysi, P. G., Eriksson, N., Furlotte, N. A., Verhoeven, V. J., Iglesias, A. I., Meester-Smoor, M. A., Tompson, S. W., Fan, Q., et al. (2018). Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 50(6), 834–848. https://doi.org/10.1038/s41588- 018-0127-7 DOI: https://doi.org/10.1038/s41588-018-0127-7
Uhlin, D., Lutteman, S., Jennings, J. A. M., & Brautaset, R. L. (2009). Refractive trends in Swedish Military recruits. Scandinavian Journal of Optometry and Visual Science, 2(1), 1–5. https://doi.org/10.5384/sjovs.vol2i1p1-5 DOI: https://doi.org/10.5384/sjovs.vol2i1p1-5
Villarreal, M. G., Ohlsson, J., Abrahamsson, M., Sjöström, A., & Sjöstrand, J. (2000). Myopisation: The refractive tendency in teenagers. prevalence of myopia among young teenagers in Sweden. Acta Ophthalmologica Scandinavica, 78(2), 177–181. https://doi.org/10.1034/j.1600-0420.2000.078002177.x DOI: https://doi.org/10.1034/j.1600-0420.2000.078002177.x
Wajuihian, S. O., & Mashige, K. P. (2021). Gender and age distribution of refractive errors in an optometric clinical population. Journal of Optometry, 14(4), 315–327. https://doi.org/10.1016/j.optom.2020.09.002 DOI: https://doi.org/10.1016/j.optom.2020.09.002
WHO. (2017). The impact of myopia and high myopia: Report of the Joint World Health Organization – Brien Holden Vision Institute Global Scientific Meeting on Myopia. University of New South Wales Sydney, Australia.
Xiang, Z.-Y., & Zou, H.-D. (2020). Recent epidemiology study data of myopia. Journal of Ophthalmology, 2020, 1–12. https://doi.org/10.1155/2020/4395278 DOI: https://doi.org/10.1155/2020/4395278
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tomas Bro, Rune Brautaset
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.