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To provide researchers with a means of assessing the fit of the structural component
of structural equation models, structural fit indices- modifications of the composite
fit indices, RMSEA, SRMR, and CFI- have recently been developed. We investigated
the performance of four of these structural fit indices- RMSEA-P, RMSEAS , SRMRS ,
and CFIS -, when paired with widely accepted cutoff values, in the service of detecting
structural misspecification. In particular, by way of simulation study, for each of seven
fit indices- 3 composite and 4 structural-, and the traditional chi-square test of perfect
composite fit, we estimated the following rates: a) Type I error rate (i.e., the probabil-
ity of (incorrect) rejection of a correctly specified structural component), under each
of four degrees of misspecification in the measurement component; and b) Power (i.e.,
the probability of (correct) rejection of an incorrectly specified structural model), under
each condition formed of the pairing of one of three degrees of structural misspecifica-
tion with one of four degrees of measurement component misspecification. In addition
to sample size, the impacts of two model features, incidental to model misspecification-
number of manifest variables per latent variable and magnitude of factor loading- were
investigated. The results suggested that, although the structural fit indices performed
relatively better than the composite fit indices, none of the goodness-of-fit index with
a fixed cutoff value pairings was capable of delivering an entirely satisfactory Type I
error rate/Power balance, [RMSEAS ,.05] failing entirely in this regard. Of the remain-
ing pairings; a) RMSEA-P and CFIS suffered from a severely inflated Type I error rate;
b) despite the fact that they were designed to pick up on structural features of candi-
date models, all pairings- and especially, RMSEA-P and CFIS -manifested sensitivities to
model features, incidental to structural misspecification; and c) although, in the main,
behaving in a sensible fashion, SRMRS was only sensitive to structural misspecification
when it occurred at a relatively high degree.

Keywords: structural equation modeling, model fit, goodness-of-fit, model misfit, fit
indices, cutoff values, model test, theory testing

The remarkable growth in quantitative theory relat-
ing to structural equation modeling (SEM) that has
occurred during the past four decades, has equipped
the researcher with tools of unprecedented power with
which to estimate and test an equally remarkable di-
versity of candidate models. Because parameter esti-
mates—more broadly, research implications—attaching
to a particular candidate model can be taken seri-
ously, only if the model is a reasonable approximation
to reality, the detection of—and assessment of degree
of—model misspecification has become a topic of in-
creasing importance. Letting {B,Γ,Φ,Ψ, . . .}T be the
numerical values assumed by the parameters of a true

population model T , in a particular population, a can-
didate model C is misspecified vis à vis T if it im-
poses restrictions such that it cannot be the case that
{B,Γ,Φ,Ψ, . . .}T = {B̂, Γ̂, Φ̂, Ψ̂, . . .}C. Thus, for example,
a model C is misspecified in the event that it restricts
to zero, a regression parameter linking two latent vari-
ables, when, in fact, the parameter is nonzero under T .

Traditionally, approaches to the detection of misspec-
ification have relied upon a sample-based estimate of
the difference between the population covariance ma-
trix Σ and the covariance matrix Σ̃(Θ) implied under a
particular candidate model, wherein Θ contains model
parameters; or, in other words, on a sample-based quan-
tification of the degree of misfit.
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Evidently, misfit is a function of both misspecification
error and sampling error. Yuan (2005) classifies misfit-
based approaches to the detection of misspecification
into two categories: binary hypothesis tests—notably,
the chi-square test of the hypothesis pair [H0 : Σ =
Σ̃(Θ),H1 : Σ any Gramian matrix]—and goodness-of-fit
indices. Jöreskog’s (1969) early warnings to the ef-
fect that, as sample size becomes large, even trivial
degrees of model misspecification will lead to rejec-
tion of H0 by the chi-square test, were highly influen-
tial, however, and goodness-of-fit indices have become,
nowadays, the chief means by which researchers adjudi-
cate model misspecification. Curiously, perhaps because
the practical interpretation of such fit indices is rarely
straightforward, it has come to be a commonplace for
applied researchers to pair fit indices with cutoff val-
ues recommended by methodological experts, Hu and
Bentler (1999) work on the latter topic being consid-
erably the most cited. Of course, to pair a goodness-
of-fit index with a fixed cutoff value—hereafter, called
a GFICV pairing or strategy—is to create a de facto bi-
nary hypothesis testing procedure, and, accordingly, an
inferential tool of the very same sort as the heavily crit-
icized chi-square test of the pair [H0 : Σ = Σ̃(Θ),H1 :
Σ any Gramian matrix].

Not surprisingly, then, the employment of GFICV pair-
ings in the service of adjudicating model misspecifi-
cation has, itself, been heavily criticized. In the first
place, it has been pointed out that, although Hu and
Bentler explicitly conditioned their recommendations
respecting cutoff values on the specific type of confirma-
tory factor analytic model which featured in their work,
researchers seem to have interpreted these values as
global standards broadly applicable across the domain
of SEM. Jackson et al. (2009), for example, found that,
although almost 60% of studies explicitly employed or
referenced Hu’s and Bentler’s recommendations, in few
of these studies was there evidence that “...warnings
about strict adherence to Hu and Bentler’s suggestions
were being heeded” (p. 18). In the second place, being
that a given GFICV pairing is a species of binary infer-
ential decision-making machinery, its decision-making
performance can be efficiently characterized in terms of
the dual concepts of Power (i.e., the probability that it
will yield a (correct) rejection of a misspecified candi-
date model) and Type I error rate (i.e., the probability
that it will yield an (incorrect) rejection of a (correctly
specified model). GFICV pairings have, then, been crit-
icized on grounds that the Power they deliver turns out
to be a function of not only sample size and extant de-
gree of misspecification, but, also, manifold model fea-
tures, incidental to misspecification, among these, num-
ber of indicators per latent variable and magnitude of fac-

tor loadings (e.g.,Breivik and Olsson, 2001; Chen et al.,
2008; Fan and Sivo, 2007; Heene et al., 2011, 2012;
Saris and Satorra, 1993; Saris et al., 2009; Yuan, 2005).
It is important to stress that these nuisance parameters
have nothing to do with the degree of the misspecifi-
cation as they are entirely unrelated to incorrectly im-
posed model restrictions. Their effects on Power are
rather complex and can be different for different param-
eters of the model as the above-mentioned literature has
shown and it is therefore essential to investigate their
effects in this study.

Even if not employed in conjunction with fixed cutoff
values, there exist serious, and still largely unresolved,
difficulties attendant to the employment of goodness-of-
fit indices in the service of adjudicating degree of model
misspecification. A general problem is that the relation-
ship between degree of sample-based misfit—i.e., the
extent of disagreement between Σ and Σ̂(θ)—and can-
didate model misspecification is exceedingly complex.
Hayduk (2014) observed that there is no necessity that
a candidate model in which, for example, there is falsely
fixed to zero, a single regression coefficient linking two
latent variables1, will yield a Σ̂(θ) which differs appre-
ciably from Σ. To the contrary, it is entirely possible that
a misspecification possessing of significant theoretical
implications will result in but a small overall difference
between Σ and Σ̂(θ). And because they are functions of
Σ − Σ̂(θ), under such a circumstance, and even in con-
junction with a respectable sample size, the chi-square
test statistic and goodness-of-fit indices, alike, may not
depart appreciably from zero (equivalently, may fail to
signal the presence of misspecification).

A second difficulty relates to the issue of the type of
misspecification with respect to which a goodness-of-
fit index is sensitive. Traditional goodness-of-fit indices
are composite or broad-band, in the sense that they are
functions of Σ − Σ̂(θ), the latter of which captures, in
a nonparticularized fashion, misspecification occurring
in either of the measurement (i.e., the relationships be-
tween latent variables and indicators) or structural (i.e.,
the relationships among latent variables) component of
a candidate model. As when a researcher formalizes his
or her theory about the interplay of learned helplessness,
anxiety, and social stress in determining the trajectory of
depression, in a specification of fixed and free regression
parameters linking latent variables, psychological the-
ory is, of course, most immediately instantiated in the
structural component of a candidate model. Arguably,
then, it is the detection of structural misspecification

1And which, in consequence, asserts a falsehood which
could potentially serve to adversely influence the development
of psychological theory as related to the causal interplay of
constructs.
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that is of paramount importance. If the validity of this
line of argumentation is granted, then it must also be
granted that it is of critical importance to the progress of
psychological science, that researchers have available to
them, goodness-of-fit indices, the sensitivities of which
are tuned to misspecification occurring within the struc-
tural component of the candidate models they test.

Unfortunately, traditional composite fit indices turn
out to be notably insensitive to misspecification occur-
ring within the structural component of candidate mod-
els. In their investigation of the issue, McDonald and
Ho (2002) reviewed 14 SEM studies and found that the
measurement components of candidate models were
better fitting than their structural counterparts, the rel-
atively smaller contribution to global misfit they made,
serving to mask misspecification on the structural side
of the coin. As they concluded, “the fit of the compos-
ite model can appear satisfactory when the few con-
straints implied by the path model are not, in fact,
correctly specified” (McDonald and Ho, 2002, p. 75).
In response to the need for such, a number of au-
thors have attempted to create fit indices possessing
of a narrow-band sensitivity to misspecification in the
structural components of candidate models. The struc-
tural fit indices thus far developed—RMSEA-P (McDon-
ald & Ho, 2002; Williams & O’Boyle, 2011), RMSEAS ,
SRMRS , and CFIS (the latter three, courtesy of Hancock
and Mueller, 2011)—are modifications of the composite
fit indices, RMSEA, SRMR, and CFI (hence lowercase ‘s’
denotes “structural”).

In what follows, we investigate the performance of
RMSEA-P, RMSEAS , SRMRS , and CFIS , in the service
of detecting structural misspecification, when paired
with widely accepted cutoff values. In particular, by
way of simulation study, for each of seven fit in-
dices—3 composite and 4 structural—and the tradi-
tional chi-square test of the pair [H0 : Σ = Σ̃(Θ),H1 :
Σ any Gramian matrix], we estimate the following rates:
a) Type I error rate (i.e., the probability of incorrect re-
jection of a correctly specified structural model), under
condition of each of four degrees of misspecification in
the measurement component; b) Power (i.e., the prob-
ability of correct rejection of an incorrectly specified
structural model), under each condition formed of the
pairing of one of three degrees of structural misspecifi-
cation with one of four degrees of misspecification in the
measurement component. In addition to sample size,
the impacts of two model features incidental to struc-
tural misspecification—number of manifest variables per
latent variable and magnitude of factor loadings—are in-
vestigated. We will be particularly interested in compar-
ing the performances of the structural fit indices—these,
designed for the express purpose of detecting structural

misspecification—to those of the traditional composite
indices. A key secondary issue on which we hope to
shed some light, is the sensitivity of the performance of
structural fit indices to the nuisance factor, misspecifica-
tion in the measurement components of models.

The organization of the manuscript is as follows:
firstly, we present a brief overview of each of the
structural fit indices, RMSEA-P, RMSEAS , SRMRS , and
CFIS ; secondly, we describe the design of the simulation
study; and, finally, we report and discuss the results,
emphasizing the implications for applied research.

Structural Fit Indices

Let there be a candidate model T featuring m endoge-
nous latent variables with p indicators, and n exogenous
latent variables with q indicators [m+n = K; p+q = S ]. In
matrix algebra notation, the model implied covariance
matrix is given as

Σ = ΛΩΛ′ + Θ,Σ = ΛΩΛ′ + Θ, Σ = ΛΩΛ′ + Θ, Σ = ΛΩΛ′ + Θ, (1)

wherein: Λ is an S × K matrix containing the factor
loadings of the S indicators on the K latent variables;
Ω is the K × K covariance matrix of the latent variables;
and Θ is the S ×S covariance matrix of the error terms of
the indicators (cf. Bollen, 1989, for a detailed account).
The matrix Ω, which is solely a function of the structural
component of model T , is given as

Ω =

[
Φ ΦΓ′[(I - B)−1]′

(I - B)−1ΓΦ [(I - B)−1](ΓΦΓ′ + Ψ)[(I - B)−1]′

]
(2)

InΩ, Φ is the n×n covariance matrix of the exogenous
latent variables; B is an m × m matrix, the i j-th element
of which is the structural impact (regression coefficient)
of the j-th endogenous latent variable on the i-th en-
dogenous latent variable on the i-th endogenous latent
variable; Γ is an m×n matrix, the i j-th element of which
is the structural impact (regression coefficient) of the
j-th exogenous latent variable on the i-th endogenous
latent variable; and Ψ is the m × m covariance matrix of
disturbances (i.e., the residuals attaching to the struc-
tural equations of the latent endogenous variables).

RMSEA-P

Let χ2
T

[
dT = χ

2
T − d fT

]
and χ2

S S

[
dS S = χ

2
S S − d fS S

]
be

the chi-square test statistics (noncentrality parameters)
for candidate model T and its structurally saturated
counterpart (wherein are free to be estimated, all pos-
sible directional paths linking latent variables), respec-
tively; χ2

P = χ
2
T −χ

2
S S ; and d fT , d fS S , and d fP be the three

associated degrees of freedom.
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RMSEA-P (McDonald & Ho, 2002; Williams &
O’Boyle, 2011) is, then, given as

√
max

 χ2
P − d fP

d fP(N − 1)
, 0

 =
√

max
(

dT − dS S

(d fT − d fS S )(N − 1)
, 0

)
(3)

Evidently, RMSEA-P is interpretable as the amount
of misfit contributed by the structural component of T
per degree of freedom. Obviously, smaller values of
RMSEA-P correspond to better structural fit.

RMSEAS

Let
d fmodel =

K(K + 1)
2

− tmodel,

wherein tmodel is the number of free parameters in
{Φ,Γ, B,Ψ}, under candidate model T ;

F̃model = ln |Ω̃T | + tr
(
Ω̃S S Ω̃

−1
T

)
− ln |Ω̃S S | − K,

wherein Ω̃T [Ω̃S S ] is the K × K covariance matrix of the
latent variables implied by T (i.e., T ’s structurally sat-
urated counterpart]; and T̃model = (n − 1)F̃model. Evi-
dently, F̃model quantifies the discrepancy between T and
its structurally saturated counterpart, and T̃model is a
pseudo test statistic. RMSEAS (Hancock and Mueller,
2011) is, then, given as

√
max

(
T̃model − d fmodel

d fmodel(N − 1)
, 0

)
=

√
max

(
F̃model − 1

d fmodel(N − 1)
, 0

)
(4)

It is clear, by inspection, that smaller values of
RMSEAS correspond to better structural fit.

Hancock and Mueller (2011) warn against the em-
ployment of T̃model as a test statistic in formal binary
hypothesis testing contexts, and emphasize, instead, its
role as a component of descriptive structural fit indices.
That being said, the employment of T̃model − d fmodel as
an estimator of noncentrality does carry with it a tacit
presumption that T̃model is at least approximately dis-
tributed as a noncentral chi-square variate. It is not yet
known whether this is a reasonable presumption. An es-
sential difference between RMSEA-P and RMSEAS can
be expressed as follows. RMSEA-P is a chi-square-based
index which captures the difference in composite model
fit between candidate model T and its structurally satu-
rated counterpart. Being that it is simply the difference
between chi-square statistics deriving from two distinct
estimated model implied covariance matrices, it is—in
theory, if not in actuality—dependent upon model fea-
tures, incidental to structural misspecification, such as

magnitude of the factor loadings and number of indicators
per latent variable (Hancock & Mueller, 2011; Heene
et al., 2011; Saris & Satorra, 1988; Saris et al., 2009;
Savalei, 2012). Because its key ingredient is a quan-
tification of the discrepancy between Ω̃T and Ω̃S S , each
but a component element of the model implied covari-
ance matrix, RMSEAS can be understood as having been
constructed explicitly with the aim that it capture misfit
solely in the structural component of a candidate model,
and, accordingly, that it be free of the effects of inciden-
tal model features such as those related to the measure-
ment component (see Hancock and Mueller, 2011, p.
319).

SRMRS

Let Ω̂S S i j[Ω̂Ti j] be the i j-th element of Ω̂S S [Ω̂T ] and
ω̂(sat)i j be the i j-th element of Ω̂sat, the saturated (just-
identified) covariance matrix of the structural model.
SRMRS , recognizable as a structurally oriented special-
ization of the standardized root mean squared residual,
is then defined as

SRMRS =

√√√
2

K(K + 1)

∑
i

zi

 ω̂S S i j − ω̂Ti j√
ω̂Tiiω̂T j j

2

(5)

The index is bound below by zero, with smaller val-
ues indicative of better structural fit.

CFIS

Let

F̃null = ln |Ω̂null| + tr
(
Ω̂S S Ω̂

−1
null

)
− ln |Ω̂S S | − K,

wherein Ω̂null is the K × K covariance matrix of the la-
tent variables implied by T ’s structurally null counter-
part (wherein are fixed to zero, all possible directional
paths linking latent variables); T̃null = (N − 1)F̃null; and

d fnull =
K(K + 1)

2
− K =

K(K − 1)
2

.

CFIS , a structural variant of the CFI composite fit in-
dex which quantifies the proportional improvement in
structural fit achieved by the candidate model relative
to its structurally null counterpart, is then defined as

CFIS = 1 −
max

[
(T̃model − d fmodel), 0

]
max

[
(T̃model − d fmodel), (T̃null − d fnull), 0

]
= 1 −

max
[
(n − 1)F̃model − d fmodel, 0

]
max

[
(n − 1)F̃model − d fmodel, (n − 1)F̃null − d fnull, 0

]
(6)
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CFIS is bounded above by unity, with large values in-
dicative of better structural fit.

Design of the Simulation Study

True Population Models

To arrive at true population models of the sort en-
countered in social research, we relied upon both a
Google Images search of the phrase, “structural equa-
tion model”, and our combined modeling experience. In
particular, we determined, a) both the number of latent
variables and number of indicators per latent variable,
b) the complexity of the structural component (i.e., the
number of pathways linking latent variables) rather typ-
ical of published social research in which SEM is em-
ployed. A reviewer commented that the Google Images
search we undertook is likely to be inadequate to the
task of identifying the sorts of structural models com-
monly arising within the social sciences. In response,
we ran a Google Scholar search using the phrase “dou-
ble mediation model” because a double latent media-
tion model (as described in the next paragraph) was the
model that appeared most often in our Google Images
web search. The Google Scholar search yielded 585 hits
per June 05, 2022, showing that a double latent medi-
ation model is indeed commonly applied in the social
sciences. On the other hand, we stress the point that
our chosen model structure should not be regarded as
prototypical of psychological research in the sense that
it represents a core model of applied SEM enabling us
to extrapolate our results to various other model struc-
tures. Hence, the actual reason that we chose this kind
of model structure was to investigate how structural fit
indices and their cutoff values perform under those cir-
cumstances wherein they encounter a commonly, hence,
typically highly-parametrized model.

Structural Component.

Although confirmatory factor analytic models are the
typical focus in SEM simulation studies, complex SEMs,
possessing of structural components, are the norm in
applied research. The structural component herein cre-
ated as typical of those arising in applied research,
was a double latent mediation model with six latent
variables (3 exogenous, 3 endogenous) linked by eight
pathways.2 Standardized regression coefficients were
selected with the guidance of the study by Peterson
and Brown (2005), in which is presented the distribu-
tion of 1,504 standardized regression weights appear-
ing in published articles in social and behavioral jour-
nals. Because misspecification relating to even a single
path in the structural component of a candidate model
may constitute a significant substantive violation of the

theory instantiated in a true population model, our ap-
proach was to select large standardized regression coef-
ficients.

Peterson and Brown (2005) reported that approxi-
mately 97% of published standardized regression coef-
ficients lie within the interval [-.5,.5] units (M = .06,
S D = .21). Accordingly, we selected an arbitrary set of
eight standardized regression coefficients lying within
the interval [.30,.57]. The lower and upper bound of
this interval corresponds to the 87th and 99th percentile,
respectively, of a random variable following a truncated
normal distribution X ∼ Ntrunc(.06, .21,−.82, .82). The
rationale for selecting regression coefficients from this
percentile interval was to define nontrivial (i.e., strong)
misspecifications in terms of the difference between
population regression weights and their counterparts
of the misspecified models being incorrectly set to zero
and to assess the power of fit index cutoff values under
such nontrivial misspecifications.

Correlations among the three exogenous latent vari-
ables were set to ρη1η2 = .30, ρη1η3 = .50, and ρη2η3 = .40,
and, accordingly, were comparable to those reported in
Hu and Bentler (1999).

Figure 1 depicts the structural component of the true
population models employed in the simulation study.

Measurement Component.

Misspecification in the measurement component of
a candidate model, the magnitudes of the factor load-
ings of the true population model (cf. Browne et al.,
2002; Hancock and Mueller, 2011; Heene et al., 2011;
Schonemann, 1981), and the number of indicators per
latent variable (Breivik & Olsson, 2001; Heene et al.,
2011; Kenny & McCoach, 2003), are model features, in-
cidental to structural misspecification, which have been
shown to have an impact upon the performance of fit
indices. Factor loading sizes were based on the re-
sults concerning typical factor loadings of psychologi-
cal questionnaires Peterson (2000) and cognitive per-
formance tests (Carroll, 1993, pp. 592–593). To allow
for an assessment of their relative impacts on the perfor-
mance, as detectors of structural misspecification, of the
fit indices, herein, under investigation, variants of the
true population model were created. In particular, the
double mediation structural core was paired with each
of the measurement components yielded by crossing the
following factors:

2Though their treatment is both beyond the scope of, and
irrelevant to the concerns of, the present research, we ac-
knowledge the deeper scientific difficulties attendant to the
employment of mediation models in social research (see, e.g.,
Grice et al., 2015; Kline, 2015; Tate, 2015).
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Figure 1

Structural component of true population models.

# 5

η1

η2

η3

η4

η5

η6.50

.30

.40

.50

.57

.55

.31
.30

.25

.47

.31

ζ 4
ζ 6

ζ 5

• Number of indicators per latent variable: 5 or 10

• Magnitude of factor loadings: small (randomly
sampled from the [.4,.6] interval) or large (ran-
domly sampled from the [.6,.8] interval)

• Magnitude of measurement error correlations:
zero (no correlated measurement errors), small
(randomly sampled from the [-.1,.1] interval),
medium (randomly sampled from the [-.2,.2] in-
terval), or large (randomly sampled from the [-
.3,.3] interval).

All told, then, data was simulated under each of six-
teen true population models.

Candidate Models

Structural Component.

Candidate models were based on one of four distinct
structural components, each representing a particular
degree of structural misspecification. In particular, ei-
ther zero [no structural misspecification], one, two, or
three of the eight nonzero structural pathways of the
true population models were, in each candidate model,
set to zero. Figures 2 to 4 depict the three misspecified
structural components.

Measurement Component.

Each of the four candidate structural components
was paired with a measurement component wherein
all measurement error correlations were restricted to be
zero. Accordingly, measurement model misspecification
was induced under all instances in which a candidate
model happened to be paired with a true population
model wherein were present non-zero measurement er-
ror correlations. More specifically, the latter three lev-
els of the magnitude of measurement error correlations
factor—i.e., small, medium, and large—can be taken as
corresponding to three (ascending) degrees of measure-
ment model misspecification.3

Notational Convention

Each of the sixty-four distinct pairings of
candidate model with true population model
is uniquely representable in terms of an S-
M notational scheme (employed as a label-
ing device in the results section), wherein

3Measurement component misspecification was opera-
tionalized in terms of measurement error correlations for the
reason that the latter represent a common phenomenon in the
social sciences. Cole et al. (2007) found that 26.6% to 31.9%
of articles published in five prominent APA journals involved
the estimation of measurement error correlations.
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Figure 2

Structural component of candidate models containing one misspecification

Misspecification 1

# 2

η1

η2

η3

η4

η5

η6

ζ 4
ζ 6

ζ 5

Figure 3

Structural component of candidate models containing two misspecifications

Misspecification 2

# 3

η1
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Figure 4

Structural component of candidate models containing three misspecification

Misspecification 3

# 4

η1

η2

η3

η4

η5

η6

ζ 4
ζ 6

ζ 5

S = degree of structural component misspecification
(0 [no structural component misspecifications], 1 [1
omitted nonzero pathway], 2 [2 omitted nonzero
pathways], 3 [3 omitted nonzero pathways]) and
M = degree of measurement component misspecification
(0 [no measurement component misspecification], 1
[omission of measurement error correlations, when, in
the true population model, they are of small magni-
tude], 2 [omission of measurement error correlations,
when, in the true population model, they are of
medium magnitude], 3 [omission of measurement
error correlations, when, in the true population model,
they are of large magnitude]). Thus, the notation
0-1 indicates the pairing of a candidate model with a
true population model, wherein there is no structural
misspecification, but a mild degree of measurement
component misspecification; 2-3, a pairing under which
there is both structural misspecification (the candidate
model omits 2 nonzero pathways) and the greatest
degree of measurement component misspecification.

Cutoff values

For each of the composite fit indices (and its struc-
tural counterpart(s)), cutoff values were as suggested
by Hu and Bentler (1999) or Hancock and Mueller
(2011) and Williams and O’Boyle (2011), respectively.
Accordingly, each of RMSEA (RMSEA-P, RMSEAS ) < .05,
SRMR (SRMRS ) < .08, and CFI (CFIS ) > .95, returned

the decision that the structural component of a candi-
date model was correctly specified. The nominal Type
I error rate of the chi-square test of the hypothesis pair
[H0 : Σ = Σ̃(Θ),H1 : Σ any Gramian matrix] was set to
.05.

General Details

Typically, Power is a function of sample size. In
the service of elucidating the relation between sam-
ple size and the Power to detect structural misspeci-
fication yielded by each of the seven GFICV pairings,
and the chi-square test, three different levels of sample
size (N = 150, 250, and1000) were selected. The two
smaller sample size conditions, especially the one with
N = 250, reflect rather typical sample size conditions
in applied SEM (MacCallum & Austin, 2000; Shah &
Goldstein, 2006; Westland, 2010). These typical sam-
ple sizes may be too small to yield sufficient Power,
which is why we also chose the sample size condition
of 1000 to ensure greater Power. Candidate models
were fit by maximum likelihood, under condition of the
multivariate normality of the indicators.4 For each of

4Though normally distributed data can seldom be found
in the social sciences (Micceri, 1989), in the service of main-
taining comparability with other simulation studies devoted to
the investigation of the performance of GFICV pairings, maxi-
mum likelihood estimation under multivariate normality was
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the 4 [degree of structural component misspecification]
× 4 [degree of measurement component misspecifica-
tion] × 2 [number of indicators per latent variable] ×
2 [magnitude of factor loadings] × 3 [sample size] =
192 conditions, 1000 simulated samples were gener-
ated. Equivalently and, perhaps, more transparently: a)
16 populations were defined under the crossing of the
factors number of indicators per latent variable, magni-
tude of factor loadings, and magnitude of measurement
error correlations; b) for each population, there was a
fixed set of parameter values of each of the structural
and measurement variety; c) the structural parameter
values were constant over population; d) the measure-
ment parameter values were unique to each population;
e) under each population—i.e., on the basis of a single
fixed set of values—and for each of the sample sizes
n = {150, 250, 1000}, 1000 simulated data sets were gen-
erated. The simulation was programmed in R (R Core
Team, 2015) using the package simsem, version .5-11
(Pornprasertmanit et al., 2015). The simulation code
can be downloaded from https://osf.io/4by5m/.

In simulation designs wherein certain of the condi-
tions correspond to the circumstance of factor load-
ings of a small magnitude and/or small sample size,
improper solutions must be expected (Driel, 1978).
Herein, simulated samples yielding of improper solu-
tions were replaced by fresh simulated samples, until
the number of proper solutions was equal to the pre-
specified 1000 (see Curran et al., 2002 for a similar ap-
proach). Under each of the 192 conditions, for each
of the 7 GFICV pairings, and the chi-square test, we
present—over the 1000 simulations—both the Type I er-
ror rate (for the case of no misspecification in the struc-
tural component) or Power (for the case of misspec-
ification in the structural component), and the mean
and standard deviation of the quantity (fit index or chi-
square test statistic) in question. For purposes of expo-
sition, a Type I rate of .05 [Power of .8] was viewed as
constituting acceptable performance.

Results

With the aim of improving stringency and clarity, re-
sults are displayed separately for conditions wherein
the candidate model does, and does not, feature mis-
specification in the measurement component. Specif-
ically, conditions featuring a pairing of candidate and
true model of type S-0 (i.e., in which there is present,
no misspecification in the measurement component) are
presented first. Though we discuss, in the body of the
text, results relating to the composite fit indices, for
only the chi-square test and GFICV pairings involving
structural fit indices, do we present the corresponding
tables. Tables for composite fit indices—which, along

with the chi-square test, in each subsection, are ad-
dressed first—can be found in the Appendix. In the
shaded main-panels of Table 3, for each GFICV pairing,
and under each of the two conditions of no misspeci-
fication in the measurement component, and misspec-
ification in the measurement component, we offer the
reader synoptic recapitulations of the results discussed,
herein.

Candidate models absent misspecification in the
measurement component

Chi-square test: Type I error rate and Power.

Table 4 contains the results for the chi-square test
paired with a nominal Type I error rate of .05.

With respect to Type I error rate, key findings were
as follows: i) irrespective of condition, the true Type
I error rate exceeded the nominal counterpart; and ii)
the degree of inflation in Type I error rate was a decreas-
ing [increasing] function of N [number of indicators per
latent variable]. The explanation for the first of these
relations– which, at various points in our discussion of
the results, we will have occasion to invoke–, resides in
the fact that, for small sample sizes, the distribution of
the chi-square test statistic departs appreciably from its
theoretical (null) sampling distribution5 (see Bentler &
Yuan, 1999, for a similar conclusion).

The second relation is consonant with the results of
Moshagen (2012), who demonstrated that, under the
state of H0 true, the departure of the distribution of the
chi-square test statistic from its theoretical counterpart
is exacerbated by increments to the order of the input
covariance matrix (see Yuan, 2005; Yuan et al., 2017
for approaches to the amelioration of the effect).

With respect to Power, key findings were as follows:
i) as one would expect, holding constant all other fac-
tors, Power was an increasing function of degree of struc-
tural misspecification; ii) Power ranged over the inter-
val [.216, 1], and reached acceptable levels (> .80) un-
der 64% of the conditions; iii) Power was an increasing
function of both number of indicators per latent variable
(cf. Saris and Satorra, 1988, who make the same obser-
vation) and magnitude of factor loadings (see, also, Han-
cock and Mueller, 2011; Heene et al., 2011; Schone-
mann, 1981 for a theoretical explanation of the effect,

employed (e.g., Browne et al., 2002; Curran et al., 2002; Hu
& Bentler, 1999; Marsh et al., 1988).

5In particular, whereas, in the case of a variate X dis-
tributed as central χ2, µX = d f and

σX =
√

2 · d f =
√

2 · µX ,

for the mean, standard deviation pairings displayed in Table 4,
σ̂X ≪

√
2 · µ̂X .

https://osf.io/4by5m/
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see Heene et al., 2011; Schonemann, 1981); iv) al-
though Power standardly increased with N, when degree
of structural misspecification was either small or moder-
ate, and under condition of five indicators per latent
variable, Power yielded by N = 250 was lower than that
yielded by N = 150. This counterintuitive effect can be
explained, once again, with reference to the fact of the
poor correspondence, at small N, between the empirical
and theoretical sampling distributions of the chi-square
test statistic; in particular, to the findings of Curran et
al. (2002), who demonstrated that, under condition of
small N, the mean of the chi-square test statistic exceeds
that of the corresponding non-central χ2 distribution.
As is evident from the 3-0 column of Table 4, the ef-
fect is mitigated under increasing degree of structural
misspecification; v) when degree of structural misspeci-
fication was either small or moderate, under condition
of small magnitude of factor loadings and five indicators
per latent variable, Power was uncharacteristically low.

RMSEA < .05: Type I error rate and Power.

For [RMSEA < .05], results are presented in Ap-
pendix 1. As can be seen, therein, under all conditions,
the Type I error rate and Power were identically zero.
This state of affairs is consonant with the {mean, stan-
dard deviation} pairings which accompany these rates,
within which the mean is always less than .05, and the
standard deviation, small. Based on these results, it
can be concluded that, although the researcher employ-
ing this particular GFICV pairing will never risk falsely
rejecting a structurally correct candidate model, they,
on the other hand, will never correctly reject a false
candidate model. Even in the extreme case wherein
the candidate model is most severely misspecified (i.e.,
wherein there are three omitted pathways), the popula-
tion factor loadings are of small magnitude, and there
are five indicators per latent variable, the population
value of RMSEA is only (approximately) .0226. This re-
sult once again highlights the aforementioned distinc-
tion between model misspecification and model misfit,
in as much as that, it demonstrates that a seriously mis-
specified candidate model may yet yield a model im-
plied covariance matrix that is close to the true popula-
tion counterpart.

SRMR < .08: Type I error rate and Power.

For SRMR paired with the usual cutoff value of .08,
values for the Type I error rate and Power are presented
in Appendix 2. Under all conditions, the Type I er-
ror rate was equal to zero. Acceptable Power (> .80)
–Power greater than zero, moreover– was achieved only
under condition of highest level of degree of structural

misspecification combined with large magnitude of fac-
tor loadings. When degree of structural misspecification
was at its highest level, and, in consequence, Power was
nonzero, Power was a decreasing [increasing] function
of N [number of indicators per latent variable, magnitude
of factor loadings]. The simulated population value of
SRMR, under condition of greatest degree of misspecifi-
cation, loadings of small magnitude, and five indicators
per latent variable, was .031, a value considerably be-
neath the .08 cutoff level. The fact that, as is evident
from Appendix 2, the mean of the sampling distribution
of SRMR tends to decrease with increasing N (see, also,
Marsh, Hau, and Wen, 2004), implies that the problem
cannot be remediated by recourse to the usual tactic of
increasing sample size.

CFI > .95: Type I error rate and Power.

Results for CFI paired with a cutoff value of .95 are
presented in Appendix 3. With respect to Type I er-
ror rate, key findings were as follows: i) in contradis-
tinction to the results for the GFICV pairings involving
SRMR and RMSEA, the Type I error rate yielded by CFI
varied widely –from 0 to .999– over conditions; ii) was
a decreasing function of N; and iii) for N < 1000, was a
decreasing [increasing] function of magnitude of factor
loadings [number of indicators per latent variable].

With respect to Power, the key findings were: i)
Power reached acceptable levels (> .80) under only 22%
of conditions; ii) for N < 1000, and holding constant
all other factors, Power was an increasing function of
degree of structural misspecification; iii) Power was a de-
creasing function of N, with rates essentially zero un-
der condition that N = 10007; iv) Power was a decreas-
ing [strongly increasing] function of magnitude of factor
loadings8 [number of indicators per latent variable].

6We used a finite population of 1,000,000 subjects to ap-
proximate the population RMSEA, SRMR, and CFI. The R syn-
tax can be downloaded from https://osf.io/wurt6/.

7For this effect, the explanation is analogous to that intro-
duced in the case of the chi-square test statistic; namely that,
under condition of small N, the mean of the chi-square test
statistic on which CFI is based, exceeds that of the correspond-
ing (theoretical) non-central χ2 distribution (see Curran et al.,
2002). In fact, under small N and greatest degree of structural
misspecification, even when the loadings are of small magni-
tude, and there is only five indicators per latent variable, the
simulated population mean of CFI (.956) still exceeded the
.95 cutoff value.

8The explanation for the effect residing in the fact that, all
things being equal, the magnitude of the covariance between a
pair of indicators is an increasing function of the magnitude of
the factor loadings of each. Accordingly, even in the presence
of structural misspecification, loadings of smaller magnitude
will yield a relatively small separation between the model im-

https://osf.io/wurt6/
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RMSEA-P < .05: Type I error rate and Power.

Results for the RMSEA-P are displayed in Table 5.
The Type I error rate: i) ranged over the interval [0,

.213] and, overall, was mildly inflated under 58% of
conditions; and ii) was a decreasing function of N (at
N = 1000, brought to levels beneath .05). Power: i)
reached acceptable levels (> .80) under 90% of condi-
tions; ii) was an increasing function of degree of struc-
tural misspecification; and iii) in cases in which degree
of structural misspecification was either small or moder-
ate, was strongly increasing in both magnitude of factor
loadings and number of indicators per latent variable.

RMSEAS < .05: Type I error rate and Power.

Table 6 presents the results for the pairing of RMSEAS

and a cutoff value of .05.
As can be seen, over all conditions, as the case may

be, the Type I error rate was egregiously high and Power,
essentially, unity. In light of the surprisingly large means
and standard deviations appearing throughout Table 6,
both findings call for an explanation in terms of a poor
correspondence between the theoretical and empirical
distribution of RMSEAS ; in particular, that both the
mean and standard deviation of the empirical distribu-
tions exceed those of their theoretical counterparts (see
Curran et al., 2002; Yuan, 2005; see Appendix 4 for
a technical elucidation of the phenomenon). For exam-
ple, the simulated population RMSEAS , under condition
of five indicators per latent variable, loadings of small
magnitude, and one (three) misspecifications, turns out
to be .278 (.459), which lies beneath each and every
one of the means of Table 6. The standard deviation of
the theoretical counterpart, under condition of misspec-
ification, is given by

SD(RMSEAS ) =
Var

(
χ2

)
√

[d f (N − 1)]2

=

√
2(d f + 2λ)√

[d f (N − 1)]2
,

(7)

with λ denoting the noncentrality parameter of a non-
central chi-square distribution and degrees of freedom
d f .

Under condition of five indicators per latent variable,
loadings of small magnitude, N = 250, and one (three)
misspecifications, (7) yields a standard deviation equal
to .011 (.021)9, a value which is, indeed, considerably
much smaller than that – .162 (.124)– which appears in
Table 6. This inflation of mean and standard deviation
can be shown to be exacerbated by the circumstance of

the true (population) model possessing of factor load-
ings of small magnitude10; indicating, of course, that
the distribution of RMSEAS is sensitive to model fea-
tures, incidental to the structural component.

SRMRS < .08: Type I error rate and Power.

As is evident from Table 7, the results bearing on the
GFICV pairing of SRMRS and cutoff value of .08 are rel-
atively straightforward.

Under all conditions, the Type I error rate was essen-
tially zero. Power, on the other hand, was near zero
under all conditions, excepting that of highest degree of
misspecification, under which, irrespective of the levels
of other factors, was essentially unity.

CFIS > .95: Type I error rate and Power.

Table 8 presents results for the GFICV pairing of CFIS

and a cutoff value of .95.
The Type I error rate: i) exceeded .05 under 58% of

conditions, but was, in the main, brought to acceptable
levels at N = 1000; ii) was a decreasing function of each
of N and number of indicators per latent variable, and
was strongly decreasing in magnitude of factor loadings.

Power: i) ranged between .775 and unity and, ac-
cordingly, under all conditions, reached an acceptable
level; ii) was an increasing function of degree of struc-
tural misspecification, reaching unity when encounter-
ing structural misspecification of the highest degree;
and iii) when degree of structural misspecification was
either small or moderate, was a decreasing function of
magnitude of factor loadings, and only weakly related to
N and number of indicators per latent variable.

Candidate models containing misspecification in the
measurement component

In what follows, we present results for candidate
models containing misspecification in both the struc-
tural and measurement components; i.e., when con-
fronted by pairings of types S-1, S-2, and S-3. As will
be recalled, measurement misspecification was induced
by pairing a candidate model absent of measurement er-
ror correlations, with a true population model in which
were present measurement error correlations, the latter
of a magnitude either small, medium, or large.

plied covariance matrices of each of a candidate model and
null model (under which the manifest variables are uncorre-
lated) (see Heene et al., 2011).

9The associated syntax files can be found on https://osf.io/
k3n4x/ and https://osf.io/8wa24/.

10An R syntax illustrating this phenomenon can be down-
loaded from https://osf.io/pmfu8/ and https://osf.io/hzxjs/

https://osf.io/k3n4x/
https://osf.io/k3n4x/
https://osf.io/8wa24/
https://osf.io/pmfu8/
https://osf.io/hzxjs/
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Chi-square test: Type I error rate and Power.

As is patent in Table 9, under condition of misspeci-
fication in the measurement component, the results for
the chi-square test paired with a nominal Type I error
rate of .05 are particularly simple, in that, for all condi-
tions under which it was defined—i.e., 0-M, M = 1, 2,
3—, the true Type I error rate was equal to unity, and,
for all conditions under which it was defined—S-M, S =
1, 2, 3—, power was equal to unity.

RMSEA < .05: Type I error rate and Power.

For RMSEA paired with the usual cutoff value of .05,
results are presented in Appendix 5. As can be seen,
therein, under condition of misspecification in the mea-
surement component, the Type I error rate yielded by
this pairing: i) ranged from .006 to unity, was egre-
giously high under 94.4% of conditions, and, in fact,
was equal to unity under 83.3% of conditions; ii) was
an increasing function of each of degree of misspecifica-
tion in the measurement component and number of in-
dicators per latent variable; and iii) was in the ballpark
of reasonable only under condition of lowest degree of
misspecification in the measurement component, number
of indicators per latent variable equal to 5, and N = 1000.
The Power yielded: i) exceeded the .8 threshold of ac-
ceptability under 88% of conditions, with the only prob-
lematically low values occurring under S-1 conditions
(i.e., those wherein misspecification in the measurement
component was of lowest degree); and ii) under con-
dition that number of indicators per latent variable was
equal to 5, was a decreasing function of N.

SRMR < .08: Type I error rate and Power.

For the pair [SRMR, .08], values for the Type I er-
ror rate and Power are presented in Appendix 6. Evi-
dently, under condition of misspecification in the mea-
surement component, the Type I error rate yielded by
this pairing: i) was either zero (72% of conditions) or
essentially unity (28%); ii) was a strongly increasing
function of each of degree of misspecification in the mea-
surement component and number of indicators per latent
variable; iii) was a decreasing function of magnitude of
factor loadings and N; and iv) approached unity under
condition of small factor loadings and at least moder-
ate degree of misspecification in the measurement compo-
nent. Power yielded by this pairing: i) reached the .8
threshold of acceptability under 47% of conditions, of
these, the vast majority of the 3-M type (3-M conditions
wherein power was inadequate, those for which number
of indicators per latent variable was equal to 5); ii) in
general, was an increasing function of both degree of
misspecification in the measurement component and mis-

specification in the structural component, with the former
appearing to be the more decisive determiner; and iii)
was largely insensitive to N.

CFI > .95: Type I error rate and Power.

The situation respecting the pairing of CFI and a cut-
off value of .95—presented in Appendix 7—is, in its sim-
plicity, similar to that of the pairing of the chi-square
test. Specifically, over all conditions under which it
was defined, the Type I error rate was near, or equal
to, unity; and under all conditions under which it was
defined, Power was equal to unity.

RMSEA-P < .05: Type I error rate and Power.

In light of their complexity, the results for [RMSEA-P,
.05] are depicted in both Table 10 and Figure 5.

With respect to Type I error rate, key findings were
as follows: i) it ranged within the interval [.002, .746]
and, under 86% of conditions, exceeded the .05 level;
ii) it was an increasing function of degree of misspecifi-
cation in the measurement component, this fact indica-
tive of the sensitivity of [RMSEA-P, .05] to model fea-
tures, incidental to structural misspecification; iii) it
manifested complex, conditional dependencies on N,
magnitude of factor loadings, and number of indicators
per latent variable. With respect to Power, key findings
were as follows: i) under 79% of conditions, it reached
acceptable (> .80) levels; ii) as with the Type I error
rate, it was, under many combinations of factor lev-
els, an increasing function of degree of misspecification
in the measurement component, implying, once again,
the pairing’s sensitivity to model features incidental to
structural misspecification; iii) when degree of structural
misspecification was at its highest level, an acceptable
level of Power was achieved, irrespective of degree of
misspecification in the measurement component (i.e., for
all of pairings 3-1 to 3-3); iv) irrespective of degree of
misspecification in the measurement component, Power
did not reach acceptable levels when magnitude of factor
loadings was small; v) when N ≤ 250 and degree of struc-
tural misspecification was either small or moderate (i.e.,
for pairings 1-1 to 2-3), Power was a complex function
of magnitude of factor loadings and number of indicators
per latent variable; vi) under condition of five indicators
per latent variable and factor loadings of small magni-
tude, the Power yielded for pairings 1-1 to 2-2 was often
egregiously low.

Random Forest Analysis.

With the aim of coming to a finer-grained under-
standing of the dependency of Power on S-M pairing,
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Figure 5

Rejection Rates for Misspecified Measurement and Structural Models for the RMSEA-P
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magnitude of factor loading, number of indicators per la-
tent variable, and N, a random forest analysis was car-
ried out using the “caret” package (Wing et al., 2018).
Notice that this analysis was carried out only for the
RMSEA-P and further below for the CFIs because Power
rates of the other GFICVs varied so little that such
an analysis would have been uninformative. Because
the simulation results being analyzed here were al-
ready based on resampled data, cross-validations were
not employed. Scaled conditional variable importance
(VIMP) measures—ranging between 0 and 100—were
calculated using the permutation accuracy importance
mode (e.g., Strobl et al., 2008)11. The random forest
regression explained 64.5% of the variance in Power.
Scaled VIMP measures are reported in Table 1.

As one would hope, degree of structural misspecifica-
tion had the greatest impact upon Power yielded by the
GFICV pairing of RMSEA-P and .05. Magnitude of load-
ings turned out to be a stronger predictor than number
of indicators per latent variable, and N had negligible
impact.

RMSEAS < .05: Type I error rate and Power.

Results for the GFICV pairing of RMSEAS and a cutoff
value of .05 are presented in Table 11.

Key findings for the Type I error rate are as follows:
i) under all conditions, it vastly exceeded the .05 level,
approaching unity under 78% of conditions; ii) it was

sensitive to the degree of misspecification in the mea-
surement component. With respect to Power, in light of
the Type I error rates observed, it was no surprise that,
under all conditions, it exceeded the .8 threshold, and,
in fact, diverged, only marginally, from unity.

SRMRS < .08: Type I error rate and Power.

In Table 12 are presented results for [SRMRS , .08].
In regards the Type I error rate: i) As was the case

under condition of no misspecification in the measure-
ment component, it was less than .05—and, in fact, near
zero—under virtually all conditions (the exception be-
ing those cases in which N = 150, magnitude of fac-
tor loadings was small, and there were five indicators
per latent variable, wherein it was still modest); and
ii) under condition wherein it was nonzero (i.e., those
conditions in which N = 150, magnitude of factor load-
ings was small, and there were five indicators per latent
variable), it was sensitive to the degree of misspecifica-
tion in the measurement component. Respecting Power:
i) it reached acceptable (> .80) levels only when de-

11It should be stressed that a VIMP for a particular predic-
tor captures all effects—direct impact and interactions of all
orders—involving the predictor. Accordingly, though a VIMP
captures the overall predictive efficacy of a given predictor,
it implies nothing about the partitioning of this efficacy into
direct and interaction effects.
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gree of structural misspecification was at its highest level
(wherein it was uniformly near unity).

CFIS < .95: Type I error rate and Power.

Results for GFICV pairing [CFIS , .95] are displayed in
Table 13.

Respecting the Type I error rate: i) it ranged over
the entire interval [0, 1], exceeding the .05 rate un-
der 81% of conditions, and, in many instances, doing so
egregiously; ii) it was an increasing function of degree
of misspecification in the measurement component; iii) it
was strongly decreasing in magnitude of factor loadings;
iv) excepting the condition wherein degree of misspecifi-
cation in the measurement component was at its highest
level, was, in the main, a decreasing function of N; and
v) was satisfactory at N = 1000, save for the condition
under which the magnitude of factor loadings was small.
As for Power: i) under 87% of conditions, it reached ac-
ceptable (> .80) levels, in many instances, approaching
unity; ii) it manifested complex dependencies on degree
of misspecification in measurement component; iii) it was,
under a number of factor combinations, a decreasing
function of N; and iv) when degree of structural misspec-
ification was either small or moderate, was a decreas-
ing [increasing] function of magnitude of factor loadings
[number of indicators per latent variable].

Random Forest Analysis.

A random forest analysis undertaken to assess the de-
pendency of Power on the condition-defining factors,
explained 88.95% of the variance. Scaled VIMP mea-
sures are reported in Table 2.

Table 1

Scaled Variable Importance Measures of the Random For-
est Analysis for the CFIs > .95

Variable Importance
Misspecification condition 100.00
Loading size 65.84
Number of items per latent
variable

9.06

Sample size 0.00

As with RMSEA-P, the degree of structural misspecifi-
cation was the best predictor, followed by magnitude of
factor loadings, and (with a considerably lower impact)
number of indicators per latent variable. Sample size,
once again, had a negligible impact.

Discussion

In this study, we investigated the performance of
eight GFICV pairings in detecting structural misspeci-

Table 2

Scaled Variable Importance Measures of the Random For-
est Analysis for the RMSEA-P < .05

Variable Importance
Misspecification condition 100.00
Loading size 45.42
Number of items per latent
variable

30.41

Sample size 0.00

fication in candidate models. Four pairings featured a
classical composite fit index designed with the aim that
it picks up on any type of misspecification, be it located
in the structural component or measurement compo-
nent, and four, a structural fit index invented expressly
with the aim that its sensitivity be focused exclusively
on structural misspecification.

More particularly, for each pairing, the Type I error
rate (under condition of no misspecification in the struc-
tural component of the candidate model) and Power
(under condition of each of three degrees of struc-
tural misspecification) was empirically estimated under
a range of conditions formed by crossing: a) three levels
of sample size; and b) the two, two, and three levels of
three model features, incidental to structural misspec-
ification, namely, magnitude of population factor load-
ings, number of indicators per latent variable, and degree
of misspecification in the measurement component of the
candidate model.

Being as they are binary inferential decision-making
instruments, the performance of each GFICV pairing can
be captured with reference to the distributions of Type
I error rates and values of Power, in conjunction with
the usual optimality criteria. Generally speaking, the
performance of a binary decision-making instrument is
deemed acceptable if: a) there is a means by which it
can be set to an acceptably low value, the Type I error
rate; b) [conditional on satisfaction of a)] the Power it
yields is an increasing function of departure from H0 (in
this case, the degree of structural misspecification inher-
ent to a candidate model), and can be made acceptably
high by recourse to selection of sample size.

With respect to the GFICV pairings which, herein, are
the focus, a third, but related, desideratum is that its
performance should not be sensitive to features of can-
didate models, incidental to structural misspecification.
To this requirement, we add two qualifications: a) in
light of the fact that the sole purpose for having added
them to the not-insubstantial complement of fit indices,
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was to equip the researcher with a means of shedding
light on the quality of the structural claims made by
models, it’s especially important that those pairings fea-
turing structural indices be insensitive to misspecifica-
tions in the measurement component; b) it is more
problematic for a pairing to be sensitive to factors, in-
cidental to structural misspecification, and, additionally,
not under control of the researcher, than incidental, and
under control of the researcher. Thus, for example, we
would view to be a greater strike against a pairing, its
sensitivity to one or both of the magnitude of factor load-
ings or misspecification in the measurement component,
than its sensitivity to the number of indicators per latent
variable (the researcher able to antecedently select a
value of the factor, number of indicators per latent vari-
able, which will ensure an optimal performance from
the pairing).

All told, these considerations suggest that, within the
present context, the issue of performance can be seen
as reducing to the issue of whether an acceptable Type
I error rate/Power balance—conventionally, the former
in the vicinity of .05 and the latter in excess of, say,
.80—can be achieved through the antecedent selection
of levels of factors which are under control of the re-
searcher. Given that Power is coded to a specific de-
gree of structural misspecification, under those circum-
stances wherein an acceptable balance can be achieved,
it will be essential to note the corresponding degree
of structural misspecification for which this holds. In
what remains, we will endeavour to provide a global
assessment of the performance of each of the individ-
ual GFICV pairings. We address those pairings featuring
a structural fit index, and composite fit index, respec-
tively, in turn, at the end of each section, offer a general
recapitulation, highlighting general themes inherent to
the performances of the pairings within each set. Fi-
nally, we address the issue of whether the former per-
form better than the latter, and, accordingly, succeed in
making a useful contribution to the fit assessment re-
sources available to the scientist. For easy reference, for
each pairing, the global assessments we formulate are
echoed in the unshaded sections of Table 3.

GFICV Pairings Featuring a Structural Fit Index

RMSEA-P, .05.

This pairing was sensitive to misspecification in the
measurement component and, under such misspecifica-
tion, manifested complex and conditional dependencies
on both the controllable factors, sample size and num-
ber of indicators per latent variable, and noncontrol-
lable factor, magnitude of factor loadings. Though, in
broad stroke, it behaves in a manner consonant with its

intended purpose, it suffers from the defect of rejecting
many structurally correct models, merely because they
happen to contain misspecification in the measurement
component.

RMSEAS , .05.

Because it yields a Type I error rate and Power es-
sentially equal to unity under all conditions for which
each is defined, it is not possible to achieve an accept-
able Type I error rate/Power balance with this pairing.
Employment of [RMSEAS , .05] is logically equivalent
to rejecting the structural component of each and every
candidate model. That is to say, it will reject both every
structurally correct candidate model, and every struc-
turally misspecified model.

SRMRS , .08.

With this pairing, the aim of creating a tool of de-
tection that is largely insensitive to misspecification in
the measurement component is realized. The single
draw-back is that it will signal misspecification in the
structural component, only when this misspecification
is relatively pronounced. All told, a well-behaved detec-
tor of structural misspecification, as long as the latter is
present at a relatively high degree.

CFIS , .95.

This pairing manifested a sensitivity to both degree of
misspecification in the measurement component and inci-
dental and non-controllable factor—magnitude of factor
loadings. Generally speaking, it matches the high Type
I error rate of [RMSEA-P, .05], while delivering slightly
better Power over all degrees of misspecification in the
structural component.

General recapitulation.

All told, none of the GFICV pairings was capa-
ble of delivering an entirely satisfactory Type I error
rate/Power balance, [RMSEAS , .05] failing entirely in
this regard. Of the remaining pairings: a) [RMSEA-
P, .05] and [CFIS , .95] suffered from a severely in-
flated Type I error rate; b) despite the fact that they
were designed with the aim that their sensitivity be fo-
cused on structural features of candidate models, all
pairings—and especially, [RMSEA-P, .05] and [CFIS ,
.95]—were, in fact, sensitive to model features, inci-
dental to structural misspecification; c) [RMSEA-P, .05]
and [CFIS , .95] were sensitive to misspecification in the
measurement component; and d) as would be expected
from an instrument which delivers a Type I error rate



16

close to zero, [SRMRS , .08] was only sensitive to struc-
tural misspecification when it occurred at a relatively
high degree.

GFICV Pairings Featuring a Composite Fit Index

Chi-square, .05.

This pairing was sensitive to the incidental, but con-
trollable, factor, number of indicators per latent variable.
Although, under condition of no misspecification in the
measurement component, it has decent power (and an
inflated Type I error rate), its sensitivity is tuned in favor
of the detection of measurement component misspecifi-
cation, in that it will falsely reject any structurally cor-
rect model that happens to feature misspecification in
the measurement component.

RMSEAS , .05.

The sensitivity of this pair is tuned exclusively to-
wards the detection of misspecification in the measure-
ment component. Only when a model contains mis-
specification in the measurement component is Power
nonzero (and, in those cases, is always near unity). On
the other hand, it rejects virtually all structurally cor-
rect models that happen to feature misspecification in
the measurement component.

SRMRS , .08.

The sensitivity of this pairing is somewhat less highly
tuned to misspecification in the measurement compo-
nent than in the case of other composite indices. It
is, however, possessing of a complex, highly condi-
tional, relationship to the degree of misspecification
in the structural component, and the Power it deliv-
ers is dependent upon the interaction of the incidental,
non-controllable, factors, magnitude of factor loadings
and presence/absence of misspecification in the mea-
surement component. Even in the presence of mis-
specification in the measurement component, a reason-
able Type I error rate/Power balance can almost be
assured, through appropriate selection of factor lev-
els—specifically, the combination of N = 1000 and at
least 10 indicators per latent variable—for high degree
of misspecification in the structural component. We
should note that Maydeu-Olivares (2017) showed that
the SRMR is a positively biased estimator and developed
an asymptotically unbiased estimator of the SRMR. Our
rather pessimistic overall results concerning Type I and
Power rates of the biased, yet still widely used SRMR
could be improved in future simulation studies by using
its asymptotically unbiased counterpart.

CFIS , .95.

The sensitivity of this pairing is tuned almost exclu-
sively towards the detection of misspecification in the
measurement component. It will reliably reject only if it
is present, misspecification in the measurement compo-
nent and, on the other hand, will reject a large propor-
tion of structurally correct models that happen to fea-
ture misspecification in the measurement component.

General recapitulation.

All told, save for [SRMR, .08], the behavior of which,
as a detector of structural misspecification, was disad-
vantageously complex, the sensitivity of these pairings
was tuned emphatically towards detection of misspecifi-
cation in the measurement component. In particular: a)
[RMSEA, .05], on the one hand, under condition of no
misspecification in the measurement component, was
wholly absent sensitivity to structural misspecification,
and, on the other, under condition of misspecification in
the measurement component, rejected the vast majority
of structurally correct models; b) though possessing of
non-zero sensitivity to structural misspecification, irre-
spective of the presence or absence of misspecification
in the measurement component, the chi-square test and
[CFIS , .95] can be expected to reject a very high propor-
tion of structurally correct models.

Are the Structural Indices Superior to the Composite
Indices?

As we have seen, composite fit indices are not well
suited to the task of detecting structural misspecifica-
tion, either because they are absent sensitivity to struc-
tural misspecification—[RMSEA, .05]—or because they
will reject structurally correct models that happen to
feature misspecification in the measurement compo-
nent; [Chi-square, .05] and [CFIS , .95]12. Though it is
closer to what is needed, the overall complexity of the
behaviour of [SRMRS , .08] renders it, yet, an undesir-
able option, when the aim is the detection of structural
misspecification.

Consequently, the question is not really whether the
structural fit indices are superior to the composite fit in-
dices, but whether any of the new structural indices per-
form well enough as detectors of structural misspecifi-
cation, to warrant their employment in applied research

12If correct, McDonald and Ho (2002) observation that the
measurement components of the models fit by social scien-
tists, tend to be better fitting than their structural counter-
parts, counts, here, as an exacerbating factor with respect to
the expected performances of these composite fit index-based
pairings.
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contexts. Unfortunately, the answer, here, also, is some-
what equivocal. The pairing [RMSEAS , .05] is of no
use; despite its billing as a structural fit index, each of
[RMSEAS , .05] and [CFIS , .95] retains a band sensitiv-
ity still too broad, each sensitive to misspecification in
the measurement component; and although behaving
in a manner consonant with its intended employment,
[SRMRS , .08] will pick up on structural misspecifica-
tion, only when it occurs at a relatively high degree.

Limitations

To protect against the making of overgeneralizations
based on the results of our study, we must keep in mind
that our results are tied to a specific model architec-
ture and to specific numerical sets of model parame-
ters. It is thus likely that rejection rates are different
for different models, and different numerical values of
model parameters will yield distinct results. Particularly,
our choice of standardized regression coefficients from
the distribution of coefficients coming from articles that
used multiple linear regression models may also sub-
stantially deviate from the actual distribution of such
coefficients from structural equation models. Further
simulation studies could take on the herculean task to
extract and use latent regression coefficient values from
the literature for their simulations to yield simulation
designs that are even closer to reality in that regard than
ours. Furthermore, we did not investigate the impact of
deviations of the data from a multivariate normal distri-
bution. As most data in psychology are categorical, re-
sults might differ when a different estimator is used. It
should nevertheless be said that applying the commonly
suggested fit index cutoff values to categorical data tend
to not discover data-model misfit (Xia & Yang, 2018).
Hence, the results presented here are fairly optimistic.
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Summary of Performance of each of Eight GFICV Pairings

GFICV Pairing Type I Error Rate Power
Chi-square, .05 No misspec. in meas. comp.

- Inflated [.078,.999], especially under large [in-
cidental, controllable] number of indicators per
latent variable
- Controllable by increasing N

No misspec. in meas. comp.
- Ranged over [.216,1], and acceptable (> .80)
under 64% of conditions
- Though an increasing function of degree of
structural misspecification, not so of N
- Increasing function of both [incidental, control-
lable] number of indicators per latent variable
and [incidental, non-controllable] magnitude of
factor loadings
Misspec. in meas. comp.
- Uniformly unity

Misspec. in meas. comp.
- Uniformly unity

Global Assessment:
No misspec. in meas. comp.: An acceptable Type I error rate/Power balance can be achieved for all degrees of
structural misspecification, by ensuring that both N and number of indicators per latent variable are large.
Misspec. in meas. comp.: Model will always be rejected, even if containing no misspecification in structural
component.
Overall: Although, under condition of no misspecification in the measurement component, has decent power (and
an inflated Type I error rate), its sensitivity is tuned in favor of the detection of measurement component misspec-
ification, in that it will falsely reject any structurally correct model that happens to feature misspecification in the
measurement component.
RMSEA, .05 No misspec. in meas. comp.

- Uniformly near zero
No misspec. in meas. comp.
- Uniformly near zero
Misspec. in meas. comp.
- Acceptable (> .80) under 86% of conditions

Misspec. in meas. comp.
- Ranged over [.006,1]; equal to unity under
83.3% of conditions

Continued on next page
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Table 3 – Continued from previous page
GFICV Pairing Type I Error Rate Power
Global Assessment:
No misspec. in meas. comp.: It will neither falsely reject a structurally correct candidate model, nor reject a
structurally misspecified model.
Misspec. in meas. comp.: Model will most always be rejected, even if containing no misspecification in structural
component.
Overall: Sensitivity tuned exclusively towards the detection of misspecification in the measurement component.
Only when a model contains misspecification in the measurement component is Power nonzero (and, then, is
always near unity). On the other hand, rejects virtually all structurally correct models that happens to feature
misspecification in the measurement component.
SRMR, .08 No misspec. in meas. comp.

- Uniformly near zero
No misspec. in meas. comp.
- Acceptable (> .80) only when degree of struc-
tural misspecification at highest level and large
[incidental, non-controllable] magnitude of fac-
tor loadings (near zero, otherwise)
- When degree of structural misspecification at
highest level: decreasing function of N; increas-
ing function of both [incidental, controllable] #
of indicators per latent variable and [incidental,
non-controllable] magnitude of factor loadings

Misspec. in meas. comp.
- Large [approaching unity] under 31% [28%] of
conditions
- Increasing function of both degree of misspecifi-
cation in measurement component and [inciden-
tal, controllable] # of indicators per latent vari-
able
- Decreasing function of both N and [incidental,
non-controllable] magnitude of factor loadings

Misspec. in meas. comp.
- Acceptable (> .80) under 47% of conditions (of
these, the vast majority of 3-M type and S-2 and
S-3 types in conjunction with small [incidental,
non-controllable] magnitude of factor loadings)
- In general, an increasing function of each de-
gree of misspecification in measurement compo-
nent and degree of misspecification in structural
component; a decreasing function of [incidental,
non-controllable] magnitude of factor loadings
- Largely insensitive to N

Continued on next page
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GFICV Pairing Type I Error Rate Power
Global Assessment:
No misspec. in meas. comp.: Acceptable Type I error rate/Power balance achievable only for highest degree
of structural misspecification and under condition that [incidental, non-controllable] magnitude of factor loadings
happens to assume a large value.
Misspec. in meas. comp.: Unfavorable Type I error rate/Power balance.
Overall: Sensitivity somewhat less highly tuned to misspecification in the measurement component than in the
case of other composite indices. However, possessing of a complex, highly conditional relationship to the degree of
misspecification in structural component; the Power it delivers, dependent upon the interaction of the [incidental,
non-controllable] factors, magnitude of factor loadings and presence/absence of misspecification in the measure-
ment component. Even in the presence of misspecification in the measurement component, a reasonable Type I
error rate/Power balance can almost be assured, through appropriate selection of factor levels, for high degree of
misspecification in the structural component.
CFI, .95 No misspec. in meas. comp.

- Varied widely [0, .999] over conditions
- For N < 1000, a decreasing [increasing] func-
tion of [incidental, non-controllable] magnitude
of factor loadings [[incidental,controllable] num-
ber of indicators per latent variable]
- Controllable by increasing N

No misspec. in meas. comp.
- Acceptable (> .80) only when degree of struc-
tural misspecification at highest level and large
[incidental, non-controllable] magnitude of fac-
tor loadings (near zero, otherwise)
- When degree of structural misspecification at
highest level: decreasing function of N; increas-
ing function of both [incidental, controllable] #
of indicators per latent variable and [incidental,
non-controllable] magnitude of factor loadings

Misspec. in meas. comp.
- Under all conditions unity or near unity

Misspec. in meas. comp.
- Under all conditions, equal to unity

Global Assessment:
No misspec. in meas. comp.: The large value of N necessary to bring Type I error under control, reduces Power-
for all degrees of structural misspecification- to unacceptably low levels.
Misspec. in meas. comp.: Model will most always be rejected, even if containing no misspecification in structural
component.
Overall: Sensitivity is tuned almost exclusively towards the detection of misspecification in the measurement com-
ponent. It will reliably reject only if is present, misspecification in the measurement component and, on the other
hand, will reject the vast majority of structurally correct models that happen to feature misspecification in the
measurement component.

Continued on next page
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Table 3 – Continued from previous page
GFICV Pairing Type I Error Rate Power
RMSEA-P, .05 No misspec. in meas. comp.

- Mildly inflated under 58% of conditions, rang-
ing over [0,.213]
- Decreasing function of N (at N=1000, brought
to levels beneath .05)

No misspec. in meas. comp.
- Acceptable (> .80) under 90% of conditions
- Increasing function of degree of structural mis-
specification
- Under condition of small or moderate degree of
structural misspecification, strongly increasing in
each of [incidental, non-controllable] magnitude
of factor loadings and [incidental, controllable]
number of indicators per latent variable.

Misspec. in meas. comp.
- Ranging over [.002,.746], exceeded .05 level
under 86% of conditions
- Increasing function of [incidental, non-
controllable] degree of misspecification in mea-
surement component
- Complex conditional dependency on N, [in-
cidental, non-controllable] magnitude of factor
loadings, and [incidental, controllable] number of
indicators per latent variable.

Misspec. in meas. comp.
- Acceptable (> .80) under 79% of conditions
- Under many conditions, an increasing function
of [incidental, non-controllable] degree of mis-
specification in measurement component
- When degree of structural misspecification at
highest level, acceptable power achieved irre-
spective of degree of misspecification in measure-
ment component

Global Assessment:
No misspec. in meas. comp.: Increasing function of degree of structural misspecification and, in the main,
delivering of a not unreasonable Type I error rate and Power.
Misspec. in meas. comp.: Inflated Type I error rate and sensitive to degree of misspecification in measurement
component.
Overall: Though, in broad stroke, it behaves in a manner consonant with its intended purpose, it suffers from
the defect of being prone to rejecting structurally correct models that happen to feature misspecification in the
measurement component.
RMSEAS , .05 No misspec. in meas. comp.

- Under 100% of conditions, egregiously high,
frequently approaching unity

No misspec. in meas. comp.
- Under 100% of conditions, approaches unity

Misspec. in meas. comp.
- Egregiously high

Misspec. in meas. comp.
- Under 100% of conditions, approaches unity

Continued on next page
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GFICV Pairing Type I Error Rate Power
Global Assessment:
No misspec. in meas. comp.: Model will always be rejected, even if containing no misspecification in structural
component.
Misspec. in meas. comp.: Model will almost always be rejected, even if containing no misspecification in structural
component.
Overall: Employment of this GFICV pairing is logically equivalent to rejecting the structural component of each
and every candidate model. That is to say, it will reject both every structurally correct candidate model, and every
structurally misspecified model.
SRMRS , .08 No misspec. in meas. comp.

- Near zero under all conditions
No misspec. in meas. comp.
- Acceptable (> .80) only when degree of struc-
tural misspecification at highest level (near-zero,
otherwise), upon which, irrespective of condi-
tion, it was essentially unity

Misspec. in meas. comp.
- For all but one condition, beneath .05

Misspec. in meas. comp.
- Acceptable (> .80) only when degree of struc-
tural misspecification at highest level, upon
which, irrespective of condition, it was essentially
unity

Global Assessment:
No misspec. in meas. comp.: As long as there is a high degree of structural misspecification to be detected,
delivers a very good Type I error/Power balance.
Misspec. in meas. comp.: As long as there is a high degree of structural misspecification to be detected, delivers a
very good Type I error/Power balance.
Overall: A well-behaved detector of structural misspecification as long as the latter is present at a relatively high
degree.
CFIS , .95 No misspec. in meas. comp.

- Ranging over [0,.691], exceeded .05 under 58%
of conditions
- Decreasing function of each of N and [inciden-
tal, non-controllable] magnitude of factor load-
ings

No misspec. in meas. comp.
- Under all conditions, approaches unity

Continued on next page
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Table 3 – Continued from previous page
GFICV Pairing Type I Error Rate Power

Misspec. in meas. comp.
- Exceeded .05 under 81% of conditions (egre-
giously high under 42% of these)
- Decreasing function of N and [incidental, non-
controllable] magnitude of factor loadings
- Entirely satisfactory at N = 1000 (save for con-
dition under which magnitude of factor loadings
small and number of indicators per latent vari-
able equal to 5)

Misspec. in meas. comp.
- Acceptable (> .80) under 87% of conditions
- Increasing function of degree of structural mis-
specification

Global Assessment:
No misspec. in meas. comp.: Sensitive to [incidental, non-controllable] magnitude of factor loadings, but, in the
main, delivers a not unreasonable Type I error rate/Power balance.
Misspec. in meas. comp.: High Type I error rate, good Power.
Overall: Matching its relatively poor Type I error rate, and delivering, perhaps, slightly better power, delivers a
detection performance very similar to that of [RMSEA-P, .05].
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Chi-Square Test with alpha=.05: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in measurement
component

Type of Misspecification in Structural and Measurement Components
N # indic. Mag.

factor
loadings

0-0 1-0 2-0 3-0

Type I error rate Power
150 5 Small .331 .378 .400 .704

(430.314; 31.093)a (434.388; 3.789)b (437.006; 3.613)c (462.255; 32.830)d

5 Large .355 .473 .576 .982
(431.129; 31.278)a (442.033; 31.761)b (45.17; 32.132)c (516.198; 34.649)d

10 Small .999 .999 .999 1
(2027.386; 71.38)e (2034.388; 71.409)f (2091.314; 72.625)h (2091.314; 72.625)h

10 Large .998 1 1 1
(2026.943; 71.077)e (2046.817; 72.087)f (2061.653; 73.034)g (215.667; 73.034)h

250 5 Small .194 .29 .267 .778
(414.896; 3.023)a (42.563; 29.932)b (424.449; 3.285)c (469.218; 33.007)d

5 Large .194 .377 .509 1
(415.402; 29.825)a (432.539; 31.044)b (445.615; 32.041)d (555.860; 37.283)d

10 Small .905 .936 .947 .998
(1875.671; 63.029)e (1887.79; 63.045)f (1895.884; 63.388)g (1981.581; 65.961)h

10 Large .903 .963 .987 1
(1876.805; 63.19)e (1909.898; 64.033)f (1933.931; 65.104)g (2076.913; 68.168)h

1000 5 Small .078 .216 .365 1
(400.784; 28.508)a (419.164; 29.646)b (433.179; 3.661)d (61.227; 41.457)d

5 Large .083 .771 .986 1
(401.06; 28.437)a (468.132; 32.912)b (519.477; 36.942)c (953.811; 55.151)d

10 Small .173 .415 .594 1
(1740.999; 58.061)e (1784.095; 6.224)f (1814.526; 6.698)g (2153.156; 71.288)h

10 Large .175 .889 .995 1
(1741.126; 58.648)e (1869.571; 62.825)f (1961.893; 66.786)h (2547.044; 79.068)h

Note. a df= 394. b df= 395. c df= 396. d df= 397. e df= 1700. f df= 1701. g df= 1702., h df= 1702.
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Table 5

RMSEA-P < .05: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in measurement component
Type of Misspecification in Structural and Measurement Components

N # indic. Mag.
factor
loadings

0-0 1-0 2-0 3-0

Type I error rate Power
150 5 Small .105 .321 .419 .995

(.014;.028)a (.037;.041)b (.048;.043)c (.157;.033)d

5 Large .173 .842 .956 1
(.023;.033)a (.105;.046)b (.132;.041)c (.278;.031)d

10 Small .146 .689 .829 1
(.020;.031)e (.077;.045)f (.096;.042)g (.237;.032)h

10 Large .213 .982 .999 1
(.027;.036)e (.154;.041)f (.188;.038)g (.339;.029)h

250 5 Small .058 .351 .482 1
(.013;.022)a (.045;.034)b (.056;.032)c (.165;.026)d

5 Large .104 .931 .991 1
(.019;.027)a (.110;.033)b (.135;.029)c (.280;.023)d

10 Small .095 .774 .932 1
(.018;.027)e (.084;.034)f (.104;.030)g (.241;.024)h

10 Large .115 .999 1 1
(.019;.027)e (.157;.030)f (.190;.029)g (.336;.022)h

1000 5 Small 0 .401 .746 1
(.008;.013)a (.055;.017)b (.069;.014)c (.171;.013)d

5 Large .001 1 1 1
(.010;.015)a (.114;.014)b (.139;.014)c (.280;.012)d

10 Small 0 .984 1 1
(.009;.013)e (.091;.015)f (.109;.014)g (.242;.012)h

10 Large 0 1 1 1
(.009;.013)e (.159;.014)f (.190;.014)g (.339;.011)h

Note. adf= 394. bdf= 395. cdf= 396. ddf= 397. edf= 1699. fdf= 1700. gdf= 1701. hdf= 1702.
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RMSEAs < .05: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in measurement component
Type of Misspecification in Structural and Measurement Components

N # indic. Mag.
factor
loadings

0-0 1-0 2-0 3-0

Type I error rate Power
150 5 Small .982 .996 1 1

(.380;.190)a (.439;.177)b (.476;.167)c (.552;.129)d

5 Large .942 1 1 1
(.239;.146)a (.369;.129)b (.418;.115)c (.518;.090)d

10 Small .977 1 1 1
(.324;.185)e (.425;.164)f (.453;.145)g (.546;.112)h

10 Large .807 1 1 1
(.134;.088)e (.315;.078)f (.372;.071)g (.483;.052)h

250 5 Small .986 1 1 1
(.358;.197)a (.428;.162)b (.474;.157)c (.558;.124)d

5 Large .911 1 1 1
(.173;.109)a (.337;.105)b (.391;.095)c (.497;.068)d

10 Small .967 1 1 1
(.269;.172)e (.386;.140)f (.434;.128)g (.533;.098)h

10 Large .716 1 1 1
(.095;.059)e (.298;.055)f (.357;.050)g (.474;.038)h

1000 5 Small .962 1 1 1
(.203;.125)a (.356;.121)b (.413;.113)c (.512;.078)d

5 Large .636 1 1 1
(.077;.042)a (.291;.042)b (.351;.037)c (.466;.026)d

10 Small .839 1 1 1
(.110;.06)e (.307;.062)f (.365;.058)g (.477;.038)h

10 Large .268 1 1 1
(.044;.026)e (.284;.025)f (.344;.025)g (.461;.017)h

Note. a df= 394. b df= 395. c df= 396. d df= 397. e df= 1700. f df= 1701. g df= 1702.
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Table 7

SRMRS < .08: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in measurement component
Type of Misspecification in Structural and Measurement Components

N # indic. Mag.
factor
loadings

0-0 1-0 2-0 3-0

Type I error rate Power
150 5 Small .011 .100 .210 .998

(.035;.016)a (.053;.021)b (.062;.023)c (.174;.035)d

5 Large 0 .004 .026 1
(.020;.008)a (.042;.013)b (.051;.014)c (.172;.022)d

10 Small 0 .020 .070 1
(.025;.010)e (.046;.016)f (.054;.016)g (.175;.027)h

10 Large 0 .001 .005 1
(.015;.007)e (.040;.011)f (.049;.011)g (.172;.019)h

250 5 Small .002 .042 .116 1
(.029;.012)a (.049;.017)b (.057;.018)c (.176;.029)d

5 Large 0 .001 .003 1
(.015;.006)a (.040;.011)b (.049;.011)c (.172;.018)d

10 Small 0 .003 .021 1
(.020;.008)e (.043;.013)f (.051;.013)g (.174;.020)h

10 Large 0 0 0 1
(.011;.005)e (.039;.008)f (.048;.009)g (.172;.015)h

1000 5 Small 0 0 .004 1
(.015;.006)a (.041;.010)b (.050;.010)c (.173;.014)d

5 Large 0 0 0 1
(.008;.003)a (.038;.005)b (.048;.005)c (.171;.009)d

10 Small 0 0 0 1
(.010;.004)e (.039;.006)f (.048;.007)g (.172;.010)h

10 Large 0 0 0 1
(.006;.002)e (.038;.004)f (.047;.004)g (.171;.007)h

Note. a df= 394. b df= 395. c df= 396. d df= 397. e df= 1700. f df= 1701. g df= 1702.



28Table 8

CFIS < .95: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in measurement component
Type of Misspecification in Structural and Measurement Components

N # indic. Mag.
factor
loadings

0-0 1-0 2-0 3-0

Type I error rate Power
150 5 Small .691 .874 .972 1

(.903;.080)a (.850;.096)b (.793;.109)c (.683;.102)d

5 Large .259 .805 .974 1
(.960;.044)a (.898;.060)b (.847;.069)c (.734;.064)d

10 Small .485 .872 .976 1
(.932;.065)e (.869;.079)f (.823;.088)g (.710;.080)h

10 Large .034 .778 .982 1
(.986;.017)e (.924;.034)f (.875;.043)g (.759;.041)h

250 5 Small .548 .883 .976 1
(.918;.076)a (.863;.084)b (.805;.097)c (.694;.091)d

5 Large .087 .801 .980 1
(.978;.029)a (.914;.047)b (.865;.054)c (.750;.048)d

10 Small .303 .862 .980 1
(.951;.058)e (.890;.067)f (.839;.075)g (.723;.069)h

10 Large .001 .775 .998 1
(.993;.008)e (.932;.023)f (.884;.030)g (.765;.031)h

1000 5 Small .150 .816 .988 1
(.971;.037)a (.905;.056)b (.851;.065)c (.737;.054)d

5 Large 0 .806 1 1
(.995;.005)a (.935;.017)b (.888;.021)c (.770;.021)d

10 Small .012 .811 .998 1
(.991;.011)e (.929;.026)f (.880;.033)g (.764;.028)h

10 Large 0 .865 1 1
(.998;.002)e (.939;.011)f (.892;.015)g (.774;.014)h

Note. a df= 394. b df= 395. c df= 396. d df= 397. e df= 1700. f df= 1701. g df= 1702.
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Table 9

Chi-Square Test with α=.05: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component
Type of Misspecification in Structural and Measurement Components

N
#

indic.

Mag.
factor

loadings
0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

Type I error rate Power

150 5 Small
1

(626.434;
41.261)

1
(1376.308;

56.688)

1
(2100.889;

73.014)

1
(630.07;
40.88)

1
(1377.715;

58.872)

1
(2101.238;

69.158)

1
(632.012;
40.853)

1
(1382.898;

57.36)

1
(2107.692;

70.842)

1
(659.21;
42.174)

1
(1407.572;

60.56)

1
(2134.852;

70.911)

150 5 Large
1

(616.177;
40.694)

1
(1299.231;

55.768)

1
(1945.89;
70.135)

1
(643.606;
42.121)

1
(1304.621;

56.132)

1
(1949.817;

69.752)

1
(633.003;
41.621)

1
(1314.782;

57.813)

1
(1962.647;

70.633)

1
(714.084;
44.689)

1
(1377.7;
59.288)

1
(2025.456;

72.006)

150 10 Small
1

(3101.012;
91.466)

1
(5741.721;
115.506)

1
(7336.88;
132.482)

1
(3105.078;

92.019)

1
(5745.742;
114.897)

1
(7344.04;
135.767)

1
(3114.66;
91.061)

1
(5754.578;
118.182)

1
(7352.072;
135.192)

1
(3167.06;
90.842)

1
(5806.056;
118.498)

1
(7405.765;
132.787)

150 10 Large
1

(3045.862;
88.735)

1
(5569.368;
114.057)

1
(7126.82;
129.608)

1
(3062.643;

89.15)

1
(5585.107;
114.692)

1
(7144.526;
128.953)

1
(3080.139;

89.68)

1
(5602.279;
115.311)

1
(7161.737;
130.213)

1
(3168.023;

90.288)

1
(5691.155;

113.86)

1
(7249.382;
130.312)

250 5 Small
1

(744.253;
45.592)

1
(1998.158;

71.193)

1
(3201.132;

91.206)

1
(745.471;
45.225)

1
(1999.411;

71.006)

1
(3204.912;

88.565)

1
(752.168;
46.278)

1
(2007.311;

69.901)

1
(3212.552;

89.337)

1
(794.3;
47.779)

1
(2046.057;

72.162)

1
(3259.877;

90.271)

250 5 Large
1

(721.446;
45.183)

1
(1861.31;
69.312)

1
(2938.99;
86.909)

1
(733.385;
46.379)

1
(1869.444;

70.355)

1
(2946.254;

86.661)

1
(748.093;
46.653)

1
(1886.345;

71.113)

1
(2966.679;

87.221)

1
(854.371;
51.619)

1
(1990.555;

72.711)

1
(3069.491;

89.658)

250 10 Small
1

(3670.652;
97.808)

1
(8070.76;
136.42)

1
(10731.60;
160.311)

1
(3698.877;

98.049)

1
(8074.304;
134.591)

1
(10738.22;
159.313)

1
(3686.892;

97.264)

1
(8090.854;
135.732)

1
(10752.261;

159.657)

1
(3773.633;

98.557)

1
(8175.731;
137.605)

1
(10834.85;
157.185)

250 10 Large
1

(3574.259;
94.311)

1
(7778.906;
133.823)

1
(10373.89;
155.727)

1
(3601.542;

94.935)

1
(7806.215;
134.299)

1
(10402.95;
156.937)

1
(3630.178;

94.96)

1
(7833.469;
134.526)

1
(10429.602;

155.645)

1
(3777.105;

97.524)

1
(7980.875;
135.019)

1
(10576.045;

157.043)

1,000 5 Small
1

(1721.843;
73.925)

1
(6741.821;
135.384)

1
(11562.18;
172.205)

1
(1725.671;

74.269)

1
(6738.672;
134.073)

1
(11572.745;

174.588)

1
(1745.905;

73.887)

1
(6770.145;

133.48)

1
(11608.003;

172.753)

1
(1912.96;
81.497)

1
(6925.838;
135.215)

1
(11775.474;

175.423)

1,000 5 Large
1

(1622.316;
72.727)

1
(6183.067;
127.485)

1
(10498.165;

166.345)

1
(1668.549;

73.333)

1
(6215.168;
127.676)

1
(10527.295;

167.279)

1
(1724.868;

75.94)

1
(6278.698;
130.107)

1
(10602.50;
164.523)

1
(2147.829;

86.529)

1
(6691.402;
134.448)

1
(11012.08;
168.449)

1,000 10 Small
1

(8908.935;
156.135)

1
(26530.76;
248.236)

1
(37168.66;
288.301)

1
(8935.182;
155.587)

1
(26551.58;

249.71)

1
(37191.801;

287.653)

1
(8980.032;
158.584)

1
(26602.14;
248.704)

1
(35853.69;
288.139)

1
(9322.338;
161.794)

1
(26939.91;
247.396)

1
(37578.06;
288.668)

1,000 10 Large
1

(8535.16;
156.434)

1
(25356.753;

240.517)

1
(35731.732;

284.392)

1
(8642.215;
157.953)

1
(25460.959;

240.401)

1
(35844.567;

280.147)

1
(8747.393;
159.587)

1
(25566.476;

240.352)

1
(35942.108;

282.703)

1
(9339.37;
163.168)

1
(26152.821;

241.18)

1
(36527.353;

283.775)
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RMSEA-P < .05: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component.

N #
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

Type I error rate Power

150 5 Small
.111

(.016;.028)
.196

(.025;.035)
.369

(.047;.045)
.173

(.024;.033)
.153

(.022;.032)
.352

(.045;.046)
.359

(.042;.041)
.462

(.053;.042)
.705

(.080;.046)
.991

(.152;.035)
.992

(.149;.035)
.993

(.166;.037)

150 5 Large
.212

(.026;.037)
.236

(.030;.038)
.353

(.042;.043)
.878

(.112;.046)
.634

(.074;.047)
.641

(.075;.047)
.948

(.125;.041)
.947

(.124;.041)
.953

(.130;.040)
1

(.270;.030)
1

(.269;.031)
1

(.270;.031)

150 10 Small
.142

(.020;.031)
.167

(.021;.035)
.197

(.024;.036)
.517

(.058;.042)
.456

(.052;.047)
.486

(.060;.045)
.794

(.090;.042)
.823

(.093;.041)
.887

(.102;.039)
1

(.235;.031)
1

(.235;.033)
1

(.241;.032)

150 10 Large
.255

(.032;.038)
.361

(.044;.044)
.459

(.053;.045)
.958

(.142;.044)
.984

(.147;.039)
.986

(.149;.039)
1

(.184;.037)
1

(.187;.036)
1

(.191;.034)
1

(.338;.029)
1

(.339;.029)
1

(.340;.029)

250 5 Small
.077

(.015;.024)
.171

(.026;.031)
.463

(.053;.038)
.124

(.022;.028)
.156

(.027;.030)
.447

(.053;.035)
.362

(.047;.033)
.571

(.063;.032)
.83

(.089;.034)
1

(.156;.027)
1

(.158;.026)
.997

(.172;.026)

250 5 Large
.132

(.021;.028)
.175

(.026;.031)
.349

(.044;.037)
.835

(.091;.034)
.716

(.077;.036)
.739

(.079;.037)
.980

(.127;.031)
.991

(.126;.030)
.996

(.133;.029)
1

(.273;.024)
1

(.270;.023)
1

(.271;.024)

250 10 Small
.102

(.02;.027)
.294

(.036;.035)
.265

(.037;.034)
.810

(.088;.036)
.616

(.068;.032)
.660

(.073;.036)
.920

(.099;.03)
.928

(.103;.028)
.977

(.105;.027)
1

(.240;.025)
1

(.239;.027)
1

(.244;.027)

250 10 Large
.175

(.027;.032)
.376

(.045;.036)
.474

(.054;.039)
.995

(.146;.031)
.996

(.149;.030)
.999

(.153;.029)
1

(.187;.028)
1

(.189;.027)
1

(.192;.027)
1

(.339;.022)
1

(.339;.022)
1

(.340;.022)

1,000 5 Small
.002

(.012;.016)
.090

(.034;.021)
.746

(.072;.019)
.016

(.024;.018)
.051

(.031;.019)
.688

(.067;.017)
.607

(.063;.014)
.893

(.076;.014)
1

(.099;.014)
1

(.164;.013)
1

(.165;.013)
1

(.179;.014)

1,000 5 Large
.002

(.012;.015)
.030

(.022;.019)
.235

(.046;.019)
.988

(.095;.016)
.909

(.082;.016)
.939

(.084;.015)
1

(.129;.014)
1

(.128;.014)
1

(.135;.014)
1

(.273;.011)
1

(.270;.011)
1

(.272;.011)

1,000 10 Small
.049

(.035;.018)
.167

(.051;.011)
.333

(.057;.016)
.909

(.079;.015)
.905

(.081;.013)
1

(.103;.028)
1

(.111;.013)
1

(.116;.009)
1

(.103;.015)
1

(.243;.012)
1

(.243;.014)
1

(.236;.012)

1,000 10 Large
.031

(.025;.019)
.262

(.049;.019)
.483

(.059;.019)
1

(.149;.014)
1

(.151;.014)
1

(.156;.014)
1

(.189;.013)
1

(.190;.013)
1

(.193;.013)
1

(.339;.010)
1

(.339;.011)
1

(.339;.011)
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Table 11

RMSEAS < .05: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component.
N

#
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

150 5 Small
.989

(.403;.197)
.989

(.383;.193)
.995

(.456;.210)
.998

(.426;.172)
.997

(.382;.161)
.997

(.425;.173)
.998

(.454;.156)
1

(.451;.159)
1

(.510;.170)
1

(.560;.133)
1

(.507;.130)
1

(.537;.134)

150 5 Large
.924

(.247;.167)
.940

(.235;.143)
.946

(.253;.152)
.948

(.757;.809)
.997

(.313;.131)
.996

(.319;.134)
1

(.406;.130)
1

(.381;.115)
1

(.394;.113)
1

(.527;.106)
1

(.487;.083)
1

(.482;.085)

150 10 Small
.978

(.376;.203)
1

(.423;.225)
.972

(.474;.238)
1

(.444;.184)
1

(.468;.207)
1

(.506;.208)
1

(.495;.157)
1

(.506;.152)
1

(.550;.161)
1

(.590;.128)
1

(.603;.118)
1

(.623;.126)

150 10 Large
.876

(.170;.111)
.927

(.228;.150)
.940

(.253;.155)
.999

(.318;.103)
1

(.344;.106)
1

(.360;.106)
1

(.384;.080)
1

(.407;.092)
1

(.426;.099)
1

(.496;.063)
1

(.510;.070)
1

(.519;.073)

250 5 Small
.990

(.354;.188)
.998

(.379;.184)
.996

(.451;.195)
.995

(.365;.165)
.993

(.381;.186)
1

(.436;.179)
1

(.424;.149)
1

(.434;.149)
1

(.503;.150)
1

(.525;.124)
1

(.519;.131)
1

(.545;.120)

250 5 Large
.896

(.180;.124)
.919

(.175;.105)
.949

(.204;.112)
.998

(.305;.111)
.997

(.276;.105)
.994

(.282;.110)
1

(.363;.087)
1

(.350;.087)
1

(.363;.093)
1

(.479;.070)
1

(.464;.064)
1

(.463;.063)

250 10 Small
.981

(.361;.195)
.991

(.479;.201)
1

(.497;.184)
.982

(.587;.649)
1

(.472;.166)
1

(.463;.155)
1

(.499;.156)
1

(.539;.142)
1

(.552;.196)
1

(.579;.106)
1

(.619;.121)
1

(.632;.114)

250 10 Large
.813

(.130;.083)
.929

(.188;.103)
.959

(.213;.113)
1

(.296;.063)
1

(.320;.074)
1

(.341;.086)
1

(.368;.056)
1

(.385;.066)
1

(.403;.078)
1

(.482;.040)
1

(.494;.050)
1

(.502;.054)

1,000 5 Small
.961

(.222;.139)
.998

(.297;.159)
1

(.476;.182)
.998

(.269;.132)
.998

(.288;.135)
1

(.434;.161)
1

(.344;.100)
1

(.373;.120)
1

(.497;.131)
1

(.471;.080)
1

(.458;.078)
1

(.540;.101)

1,000 5 Large
.661

(.080;.042)
.793

(.095;.043)
.977

(.142;.045)
1

(.254;.044)
1

(.225;.043)
1

(.238;.042)
1

(.322;.037)
1

(.309;.035)
1

(.324;.034)
1

(.447;.025)
1

(.433;.023)
1

(.436;.023)

1,000 10 Small
1

(.401;.186)
1

(.593;.18)
1

(.742;.176)
1

(.437;.158)
1

(.653;.197)
1

(.917;.082)
1

(.519;.128)
1

(.634;.125)
1

(.314;.143)
1

(.584;.095)
1

(.667;.103)
1

(.701;.160)

1,000 10 Large
.752

(.087;.039)
.975

(.143;.047)
.996

(.171;.052)
1

(.275;.028)
1

(.290;.032)
1

(.311;.034)
1

(.350;.025)
1

(.361;.028)
1

(.374;.029)
1

(.468;.017)
1

(.475;.020)
1

(.482;.021)
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SRMRS < .08: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component
N

#
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

150 5 Small
.014

(.036;.016)
.026

(.040;.018)
.081

(.048;.020)
.040

(.045;.018)
.049

(.044;.019)
.160

(.053;.025)
.111

(.056;.020)
.135

(.058;.019)
.287

(.070;.023)
.993

(.161;.034)
.979

(.152;.035)
.986

(.160;.039)

150 5 Large
0

(.020;.009)
0

(.021;.009)
0

(.022;.009)
.071

(.055;.037)
.003

(.034;.012)
0

(.033;.013)
.018

(.048;.013)
.014

(.047;.013)
.022

(.048;.014)
1

(.173;.023)
1

(.164;.023)
1

(.164;.023)

150 10 Small
0

(.025;.011)
.008

(.026;.011)
0

(.028;.012)
.008

(.040;.014)
.007

(.039;.016)
.014

(.041;.015)
.024

(.050;.015)
.031

(.052;.015)
.070

(.054;.015)
1

(.172;.027)
1

(.168;.029)
1

(.169;.026)

150 10 Large
0

(.015;.006)
0

(.016;.007)
0

(.017;.007)
0

(.038;.011)
0

(.038;.010)
0

(.037;.010)
.004

(.048;.010)
.004

(.048;.010)
.006

(.048;.010)
1

(.171;.019)
1

(.170;.019)
1

(.169;.020)

250 5 Small
.002

(.029;.013)
.005

(.034;.014)
.021

(.042;.016)
.003

(.036;.015)
.014

(.037;.016)
.044

(.046;.016)
.037

(.048;.015)
.055

(.053;.016)
.190

(.064;.019)
.998

(.158;.028)
.998

(.154;.028)
.992

(.158;.030)

250 5 Large
0

(.015;.007)
0

(.016;.007)
0

(.019;.007)
0

(.035;.010)
0

(.031;.010)
0

(.030;.010)
.003

(.045;.010)
.001

(.044;.010)
.004

(.045;.010)
1

(.167;.018)
1

(.164;.017)
1

(.164;.018)

250 10 Small
0

(.020;.009)
0

(.024;.009)
0

(.025;.008)
.024

(.047;.024)
0

(.036;.011)
0

(.037;.011)
.007

(.047;.012)
.010

(.048;.011)
0

(.048;.010)
1

(.172;.022)
1

(.168;.022)
1

(.168;.026)

250 10 Large
0

(.012;.005)
0

(.013;.005)
0

(.014;.005)
0

(.037;.008)
0

(.036;.008)
0

(.036;.008)
0

(.047;.008)
0

(.047;.008)
.001

(.047;.008)
1

(.171;.015)
1

(.169;.015)
1

(.168;.015)

1,000 5 Small
0

(.016;.006)
0

(.023;.008)
0

(.037;.009)
0

(.024;.009)
0

(.025;.009)
0

(.037;.009)
0

(.040;.008)
.002

(.044;.008)
.013

(.057;.009)
1

(.158;.014)
1

(.152;.015)
1

(.157;.016)

1,000 5 Large
0

(.008;.003)
0

(.009;.004)
0

(.013;.004)
0

(.032;.005)
0

(.028;.005)
0

(.027;.005)
0

(.043;.005)
0

(.041;.005)
0

(.042;.005)
1

(.166;.009)
1

(.163;.009)
1

(.163;.009)

1,000 10 Small
0

(.014;.004)
0

(.017;.003)
0

(.018;.004)
0

(.034;.006)
0

(.033;.006)
0

(.036;.009)
0

(.044;.006)
0

(.044;.005)
0

(.044;.007)
1

(.170;.010)
1

(.164;.011)
1

(.154;.011)

1,000 10 Large
0

(.007;.002)
0

(.009;.002)
0

(.010;.003)
0

(.036;.004)
0

(.035;.004)
0

(.035;.004)
0

(.046;.004)
0

(.045;.004)
0

(.046;.004)
1

(.170;.007)
1

(.168;.007)
1

(.167;.007)
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Table 13

CFIs < .95: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component
N

#
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

150 5 Small
.714

(.896;.083)
.695

(.896;.083)
.815

(.858;.099)
.847

(.859;.090)
.826

(.876;.083)
.893

(.845;.094)
.963

(.810;.100)
.951

(.803;.103)
.981

(.749;.118)
.998

(.687;.101)
1

(.714;.099)
1

(.675;.104)

150 5 Large
.276

(.956;.052)
.260

(.960;.043)
.313

(.954;.050)
.836

(.763;.277)
.650

(.921;.058)
.646

(.916;.061)
.959

(.856;.074)
.952

(.868;.067)
.951

(.857;.067)
1

(.731;.073)
1

(.756;.060)
1

(.756;.062)

150 10 Small
.561

(.917;.074)
.667

(.901;.088)
.761

(.882;.098)
.839

(.870;.084)
.846

(.858;.099)
.889

(.836;.109)
.976

(.813;.091)
.969

(.802;.092)
1

(.775;.100)
1

(.699;.086)
1

(.692;.085)
1

(.666;.089)

150 10 Large
.097

(.979;.028)
.215

(.964;.044)
.285

(.957;.047)
.693

(.925;.044)
.774

(.916;.047)
.833

(.909;.047)
.988

(.874;.046)
.988

(.863;.052)
.993

(.852;.056)
1

(.759;.045)
1

(.753;.048)
1

(.747;.050)

250 5 Small
.582

(.918;.074)
.683

(.905;.075)
.815

(.868;.090)
.735

(.894;.079)
.764

(.882;.092)
.899

(.848;.096)
.949

(.841;.086)
.966

(.824;.092)
.990

(.766;.102)
1

(.725;.089)
1

(.719;.093)
1

(.684;.094)

250 5 Large
.113

(.975;.034)
.096

(.977;.027)
.166

(.969;.033)
.647

(.928;.049)
.536

(.938;.044)
.565

(.934;.047)
.960

(.882;.048)
.952

(.887;.049)
.976

(.876;.054)
1

(.766;.049)
1

(.774;.046)
1

(.770;.046)

250 10 Small
.531

(.926;.067)
.789

(.884;.078)
.898

(.881;.068)
.861

(.817;.226)
.920

(.863;.076)
.915

(.862;.074)
.983

(.815;.087)
1

(.790;.085)
1

(.785;.110)
1

(.713;.071)
1

(.688;.079)
1

(.676;.079)

250 10 Large
.032

(.987;.015)
.112

(.976;.025)
.171

(.970;.030)
.685

(.936;.026)
.784

(.927;.031)
.831

(.918;.038)
.996

(.883;.031)
.997

(.876;.037)
.998

(.865;.044)
1

(.769;.030)
1

(.764;.035)
1

(.758;.037)

1,000 5 Small
.207

(.965;.042)
.422

(.940;.058)
.912

(.863;.084)
.444

(.941;.055)
.537

(.931;.057)
.928

(.857;.083)
.916

(.894;.053)
.964

(.873;.066)
1

(.784;.081)
1

(.777;.052)
1

(.779;.052)
1

(.706;.068)

1,000 5 Large
0

(.995;.005)
.001

(.993;.006)
.005

(.986;.009)
.459

(.950;.017)
.237

(.959;.015)
.354

(.954;.016)
.995

(.905;.020)
.989

(.910;.019)
.998

(.899;.020)
1

(.787;.019)
1

(.794;.018)
1

(.789;.019)

1,000 10 Small
.618

(.916;.067)
1

(.843;.081)
1

(.779;.086)
.881

(.883;.072)
1

(.783;.095)
1

(.642;.049)
1

(.810;.072)
1

(.744;.072)
.978

(.904;.057)
1

(.719;.060)
1

(.666;.067)
1

(.642;.104)

1,000 10 Large
0

(.995;.004)
.003

(.987;.008)
.008

(.982;.011)
.683

(.945;.010)
.787

(.904;.012)
.920

(.932;.014)
1

(.894;.014)
1

(.889;.015)
1

(.882;.016)
1

(.779;.013)
1

(.777;.015)
1

(.773;.015)
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Appendix A

Table A1

RMSEA < .05: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in
measurement component

N #
indic.

Mag.
factor

loadings
0-0 1-0 2-0 3-0

Type I error rate Power

150 5 Small 0 (.022;.012) 0 (.024;.011) 0 (.024;.011) 0 (.032;.01)
5 Large 0 (.023;.011) 0 (.026;.011) 0 (.029;.010) .003 (.044;.007)

10 Small 0 (.036;.004) 0 (.036;.004) 0 (.036;.004) 0 (.039;.004)
10 Large 0 (.036;.004) 0 (.037;.004) 0 (.037;.004) 0 (.042;.003)

250 5 Small 0 (.013;.009) 0 (.014;.009) 0 (.015;.009) 0 (.026;.007)
5 Large 0 (.013;.009) 0 (.018;.009) 0 (.021;.009) 0 (.04;.005)

10 Small 0 (.020;.004) 0 (.021;.004) 0 (.021;.004) 0 (.025;.003)
10 Large 0 (.020;.004) 0 (.022;.003) 0 (.023;.003) 0 (.03;.003)

1000 5 Small 0 (.004;.004) 0 (.007;.005) 0 (.023;.002)
5 Large 0 (.004;.004) 0 (.013;.003) 0 (.017;.003) 0 (.037;.002)

10 Small 0 (.004;.003) 0 (.007;.003) 0 (.008;.002) 0 (.016;.001)
10 Large 0 (.004;.003) 0 (.010;.002) 0 (.012;.002) 0 (.022;.001)

Appendix B

Table B1

SRMR < .08: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in
measurement component

N #
indic.

Mag.
factor

loading
0-0

Type I error rate
1-0

2-0
Power

3-0

150 5 Small 0 (.060;.003) 0 (.061;.003) 0 (.061;.003) .020 (.068;.005)
5 Large 0 (.048;.003) 0 (.050;.004) 0 (.052;.004) .853 (.092;.011)

10 Small 0 (.065;.002) 0 (.066;.002) 0 (.066;.002) .155 (.075;.004)
10 Large 0 (.053;.003) 0 (.056;.003) 0 (.057;.003) .986 (.102;.010)

250 5 Small 0 (.046;.002) 0 (.047;.002) 0 (.047;.002) .020 (.056;.005)
5 Large 0 (.037;.002) 0 (.040;.003) 0 (.041;.003) .746 (.087;.01)

10 Small 0 (.050;.001) 0 (.051;.001) 0 (.051;.001) .063 (.063;.004)
10 Large 0 (.041;.002) 0 (.044;.002) 0 (.045;.002) .963 (.094;.008)

1000 5 Small 0 (.023;.001) 0 (.024;.001) 0 (.025;.001) .000 (.038;.003)
5 Large 0 (.019;.001) 0 (.024;.002) 0 (.026;.002) .511 (.080;.005)

10 Small 0 (.025;.001) 0 (.027;.001) 0 (.027;.001) .000 (.045;.003)
10 Large 0 (.020;.001) 0 (.026;.001) 0 (.028;.001) .982 (.089;.004)
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Appendix C

Table C1

CFI < .95: Type I error rate and Power (Means; Standard Deviations) under condition of no misspecification in mea-
surement component

N #
indic.

Mag.
factor

loading
0-0

Type I error rate
1-0

2-0
Power

3-0

150 5 Small .415 (.954;.034) .466 (.951;.034) .496 (.949;.034) .786 (.920;.039)
5 Large .011 (.983;.013) .021 (.979;.013) .039 (.976;.014) .585 (.947;.015)

10 Small .999 (.845;.033) .999 (.841;.033) .999 (.840;.033) 1 (.815;.033)
10 Large .834 (.936;.014) .886 (.933;.014) .925 (.930;.014) .996 (.913;.014)

250 5 Small .074 (.981;.018) .094 (.979;.019) .106 (.977;.019) .568 (.945;.024)
5 Large 0 (.993;.007) 0 (.989;.008) 0 (.986;.008) .244 (.957;.010)

10 Small .609 (.944;.020) .677 (.940;.020) .729 (.938;.020) .981 (.911;.020)
10 Large .002 (.978;.008) .003 (.974;.008) .005 (.972;.008) .347 (.953;.008)

1000 5 Small 0 (.997;.004) 0 (.995;.005) 0 (.993;.005) .128 (.959;.008)
5 Large 0 (.999;.001) 0 (.995;.002) 0 (.992;.003) 0 (.962;.004)

10 Small 0 (.996;.004) 0 (.993;.005) 0 (.990;.005) .017 (.962;.006)
10 Large 0 (.998;.001) 0 (.995;.002) 0 (.992;.002) 0 (.974;.002)

Appendix D
Technical Elucidation of Departure of Mean and Standard Deviation of RMSEAs from Theoretical Counterparts
Because RMSEAS is simply the standard RMSEA computed on the structural component of a candidate model, and,
under particular assumptions, the sampling distribution of the RMSEA is known (e.g., Rigdon, 1996; Steiger, 1990),
the parameters of the sampling distribution of RMSEAS can be analytically derived. If the particular assumptions
are satisfied, and H0 is true, it can be shown that χ̂2

misspec of (4) has a central χ2-distribution. Accordingly, setting

aside those instances of a negative value of χ̂2
misspec − χ̂

2
model, the squared counterpart of RMSEAS , ˆRMSEA

2
S , will also

have approximately central χ2. It follows, then, that:

E(RMSEA2
S) =

E(χ̂2
misspec) − E(χ̂2

model)

dfmodel(N − 1)
= 0;

and

Var(RMSEA2
S) =

Var(χ̂2
misspec)

dfmodel(N − 1)
=

2df
[df(N − 1)]2 =

2
df(N − 1)

.

As shown in Table 6, however, under H0 true [i.e., a correctly specified structural component], the empirical means
of RMSEAs are seldom close to zero. Now, as for the case of our models, with six indicators and 14 parameters
to be estimated (three correlations, eight paths, and three error variances), d f is equal to (6(6 + 1)/2) − 14 = 7.
Finally, with sample sizes of N = [150, 250, 1000], the theoretical standard deviation of RMSEAS is computed to be
[.004, .002, .001]. It will be confirmed by inspection that the empirical standard deviations presented in Table 6
are not even close to these values. All told, it appears that the distribution of RMSEAS is not well approximated by
the theoretical distributions, heretofore, by methodologists, derived. It would have to be concluded that the actual
distribution of RMSEAS remains unknown; and there exists no logical basis for selecting cutoff values such as .05,
by means of reference to the quantiles of distributions, the relevance of which, to the actual distribution of RMSEAS ,
is unknown.
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Appendix E

Table E1

RMSEA < .05: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component

N #
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

Type I error rate Power

150 5 Small .677
(.062;.006)

1
(.129;.004)

1
(.170;.004)

.705
(.063;.006)

1
(.129;.004)

1
(.170;.004)

.707
(.063;.006)

1
(.129;.004)

1
(.170;.004)

.869
(.066;.005)

1
(.130;.004)

1
(.171;.003)

150 5 Large .566
(.061;.006)

1
(.124;.004)

1
(.162;.004)

.789
(.065;.006)

1
(.124;.004)

1
(.162;.004)

.993
(.063;.006)

1
(.124;.004)

1
(.162;.004)

.585
(.073;.005)

1
(.128;.004)

1
(.165;.004)

150 10 Small 1
(.074;.002)

1
(.126;.002)

1
(.149;.002)

.999
(.074;.002)

1
(.126;.002)

1
(.149;.002)

1
(.074;.002)

1
(.126;.002)

1
(.149;.002)

.999
(.076;.002)

1
(.127;.002)

1
(.149;.002)

150 10 Large 1
(.073;.002)

1
(.123;.002)

1
(.146;.002)

1
(.073;.002)

1
(.123;.002)

1
(.146;.002)

1
(.073;.002)

1
(.123;.002)

1
(.146;.002)

1
(.073;.002)

1
(.125;.002)

1
(.147;.002)

250 5 Small .443
(.060;.004)

1
(.128;.003)

1
(.169;.003)

.444
(.059;.004)

1
(.127;.003)

1
(.169;.003)

.444
(.06;.004)

1
(.128;.003)

1
(.169;.003)

.487
(.063;.004)

1
(.129;.003)

1
(.170;.003)

250 5 Large .269
(.058;.004)

1
(.122;.003)

1
(.161;.003)

.350
(.058;.004)

1
(.122;.003)

1
(.161;.003)

.350
(.058;.004)

1
(.122;.003)

1
(.161;.003)

.983
(.063;.004)

1
(.128;.003)

1
(.164;.003)

250 10 Small 1
(.068;.002)

1
(.122;.001)

1
(.146;.001)

1
(.069;.002)

1
(.122;.001)

1
(.146;.001)

1
(.069;.002)

1
(.122;.001)

1
(.146;.001)

1
(.068;.004)

1
(.123;.001)

1
(.146;.001)

250 10 Large 1
(.066;.002)

1
(.12;.001)

1
(.143;.001)

1
(.067;.002)

1
(.12;.001)

1
(.143;.001)

1
(.067;.002)

1
(.12;.001)

1
(.143;.001)

1
(.067;.002)

1
(.123;.001)

1
(.146;.001)

1000 5 Small .105
(.058;.002)

1
(.127;.001)

1
(.168;.001)

.112
(.058;.002)

1
(.127;.001)

1
(.168;.001)

.112
(.058;.002)

1
(.127;.001)

1
(.168;.001)

.854
(.062;.002)

1
(.128;.001)

1
(.169;.001)

1000 5 Large .006
(.056;.002)

1
(.121;.001)

1
(.16;.001)

.025
(.057;.002)

1
(.121;.001)

1
(.16;.001)

.025
(.057;.002)

1
(.121;.001)

1
(.16;.001)

.105
(.057;.002)

1
(.126;.001)

1
(.161;.001)

1000 10 Small 1
(.065;.001)

1
(.121;.001)

1
(.144;.001)

1
(.065;.001)

1
(.121;.001)

1
(.144;.001)

1
(.065;.001)

1
(.121;.001)

1
(.144;.001)

1
(.065;.001)

1
(.122;.001)

1
(.145;.001)

1000 10 Large 1
(.063;.001)

1
(.118;.001)

1
(.142;.001)

1
(.064;.001)

1
(.118;.001)

1
(.142;.001)

1
(.064;.001)

1
(.118;.001)

1
(.142;.001)

1
(.064;.001)

1
(.118;.001)

1
(.143;.001)
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Table F1

SRMR < .08: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component

N #
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

Type I error rate Power

150 5 Small .003
(.071;.003)

1
(.093;.004)

1
(.110;.005)

.001
(.071;.003)

1
(.093;.004)

1
(.110;.005)

.002
(.071;.003)

1
(.094;.004)

1
(.110;.004)

.283
(.078;.005)

1
(.099;.005)

1
(.117;.006)

150 5 Large 0
(.054;.004)

.004
(.068;.004)

.407
(.079;.005)

0
(.059;.004)

.012
(.069;.004)

.434
(.081;.005)

0
(.057;.004)

.019
(.074;.004)

.536
(.081;.005)

.966
(.098;.01)

.993
(.104;.011)

1
(.113;.01)

150 10 Small .099
(.077;.002)

1
(.094;.003)

1
(.104;.003)

.116
(.077;.002)

1
(.095;.003)

1
(.104;.003)

.163
(.078;.002)

1
(.095;.003)

1
(.104;.003)

.952
(.086;.004)

1
(.102;.004)

1
(.111;.004)

150 10 Large 0
(.073;.003)

.003
(.071;.003)

.161
(.076;.004)

0
(.062;.003)

.01
(.072;.003)

.29
(.078;.004)

0
(.063;.003)

.023
(.073;.003)

.374
(.086;.004)

.997
(.105;.01)

1
(.112;.009)

1
(.116;.009)

250 5 Small 0
(.060;.002)

.97
(.085;.003)

1
(.104;.003)

0
(.06;.002)

.963
(.085;.003)

1
(.104;.003)

0
(.06;.002)

.977
(.086;.003)

1
(.104;.003)

.003
(.067;.004)

1
(.092;.004)

1
(.111;.005)

250 5 Large 0
(.045;.003)

.023
(.061;.003)

.023
(.073;.004)

0
(.047;.003)

.003
(.062;.003)

.035
(.073;.004)

0
(.048;.003)

.065
(.063;.003)

.848
(.089;.009)

.995
(.099;.009)

1
(.109;.008)

1
(.117;.008)

250 10 Small 0
(.065;.002)

.995
(.085;.002)

1
(.096;.002)

0
(.066;.002)

.996
(.085;.002)

1
(.096;.002)

0
(.066;.002)

.998
(.086;.002)

1
(.096;.002)

.101
(.076;.003)

1
(.094;.003)

1
(.103;.003)

250 10 Large 0
(.050;.002)

1
(.062;.002)

1
(.069;.003)

0
(.052;.002)

1
(.064;.003)

1
(.07;.003)

0
(.053;.002)

1
(.065;.003)

1
(.071;.003)

.88
(.1;.008)

1
(.107;.007)

1
(.111;.007)

1000 5 Small 0
(.045;.001)

.001
(.076;.001)

1
(.096;.002)

0
(.045;.001)

.001
(.076;.001)

1
(.096;.002)

0
(.045;.001)

.001
(.076;.001)

1
(.096;.002)

.729
(.054;.002)

.999
(.083;.002)

1
(.104;.004)

1000 5 Large 0
(.032;.001)

0
(.052;.001)

1
(.066;.002)

0
(.034;.001)

0
(.053;.001)

1
(.067;.002)

0
(.036;.001)

0
(.055;.001)

1
(.067;.002)

.003
(.062;.002)

.999
(.083;.002)

1
(.104;.004)

1000 10 Small 0
(.049;.001)

0
(.073;.001)

1
(.085;.001)

0
(.049;.001)

0
(.074;.001)

1
(.085;.001)

0
(.049;.001)

0
(.074;.001)

1
(.085;.001)

.999
(.074;.001)

1
(.083;.002)

.999
(.094;.001)

1000 10 Large 0
(.035;.001)

0
(.051;.001)

1
(.059;.001)

0
(.038;.001)

0
(.053;.001)

1
(.061;.001)

0
(.04;.001)

0
(.054;.001)

1
(.062;.001)

.093
(.061;.001)

1
(.1;.004)

1
(.105;.004)
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Appendix G

Table G1

CFI < .95: Type I error rate and Power (Means; Standard Deviations) under condition of misspecification in measurement component

N #
indic.

Mag.
factor

loadings

0-1 0-2 0-3 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-1

Type I error rate Power

150 5 Small 1
(.775;.04)

1
(.456;.036)

1
(.334;.03)

1
(.772;.04)

1
(.457;.037)

1
(.335;.03)

1
(.772;.039)

1
(.454;.037)

1
(.332;.031)

1
(.747;.041)

1
(.442;.038)

1
(.323;.031)

150 5 Large .994
(.909;.017)

1
(.712;.024)

1
(.594;.026)

.999
(.89;.019)

1
(.711;.024)

1
(.593;.026)

1
(.903;.017)

1
(.708;.024)

1
(.59;.026)

.999
(.86;.02)

1
(.688;.024)

1
(.573;.026)

150 10 Small 1
(.559;.033)

1
(.308;.026)

1
(.243;.021)

1
(.559;.033)

1
(.307;.026)

1
(.241;.022)

1
(.555;.033)

1
(.306;.026)

1
(.24;.022)

1
(.539;.033)

1
(.297;.025)

1
(.234;.022)

150 10 Large 1
(.781;.019)

1
(.554;.023)

1
(.47;.022)

1
(.778;.019)

1
(.552;.023)

1
(.468;.022)

1
(.776;.019)

1
(.55;.023)

1
(.467;.022)

1
(.761;.019)

1
(.54;.022)

1
(.458;.022)

250 5 Small 1
(.791;.028)

1
(.461;.028)

1
(.337;.023)

1
(.791;.028)

1
(.461;.028)

1
(.336;.024)

1
(.787;.029)

1
(.459;.028)

1
(.335;.023)

1
(.763;.03)

1
(.445;.028)

1
(.324;.024)

250 5 Large .998
(.919;.012)

1
(.718;.018)

1
(.597;.019)

.998
(.916;.012)

1
(.716;.018)

1
(.596;.019)

.999
(.912;.017)

1
(.713;.018)

1
(.593;.019)

.999
(.886;.013)

1
(.694;.018)

1
(.577;.019)

250 10 Small 1
(.600;.025)

1
(.319;.02)

1
(.25;.017)

1
(.592;.025)

1
(.319;.02)

1
(.249;.017)

1
(.598;.025)

1
(.317;.02)

1
(.248;.017)

1
(.58;.025)

1
(.309;.02)

1
(.241;.017)

250 10 Large 1
(.810;.013)

1
(.569;.017)

1
(.481;.017)

1
(.808;.013)

1
(.567;.017)

1
(.479;.017)

1
(.805;.013)

1
(.565;.017)

1
(.477;.017)

1
(.792;.017)

1
(.555;.017)

1
(.469;.017)

1000 5 Small 1
(.800;.012)

1
(.464;.014)

1
(.337;.012)

1
(.8;.012)

1
(.464;.014)

1
(.337;.012)

1
(.797;.012)

1
(.461;.014)

1
(.335;.012)

1
(.772;.013)

1
(.448;.014)

1
(.325;.011)

1000 5 Large 1
(.923;.005)

1
(.721;.008)

1
(.599;.009)

1
(.919;.005)

1
(.719;.009)

1
(.598;.009)

1
(.917;.005)

1
(.716;.009)

1
(.595;.009)

.999
(.891;.006)

.999
(.697;.009)

.999
(.579;.009)

1000 10 Small 1
(.623;.012)

1
(.325;.01)

1
(.253;.009)

1
(.622;.012)

1
(.325;.01)

1
(.253;.009)

1
(.619;.012)

1
(.323;.01)

1
(.251;.009)

1
(.601;.012)

1
(.314;.01)

1
(.26;.009)

1000 10 Large 1
(.824;.006)

1
(.576;.008)

1
(.486;.008)

1
(.822;.006)

1
(.574;.008)

1
(.484;.008)

1
(.819;.006)

1
(.572;.008)

1
(.483;.008)

1
(.804;.006)

1
(.562;.008)

1
(.474;.008)
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