Nonlinear deterministic modelling of ecological scenarios - typical predictions and limitations

Downloads

Authors

  • Torsten Lindström Linnéuniversitete
  • Michael Lindberg Linnéuniversitetet
  • Diauddin Nammari Linnéuniversitetet
  • Willem Stolte Linnéuniversitetet

DOI:

https://doi.org/10.15626/Eco-Tech.2003.050

Keywords:

Deterministic modelling, intra- and interspecific competition, predatorprey model, Gause system.

Abstract

Modelling population and commwiity dynamics has evolved a lot after the early attempts
by Malthus (1798), Darwin ( 1878), Lotka ( 1925), and Volterra ( 1926). The power of
nonlinear simple deterministic models is usually that they show right directions and
Volterra's principle still remain a remarkable example of that Another benefit is that
many properties of the models can be made visible in a geometric way to scientists with
little or limited backgrowid in mathematics.
Today more is known about species response to competition, nutrient limitation,
predation and what environments support longer food-chains. In this paper we show how
typical communities like competing species, predator-prey systems, and food-chains
reply to changes in the environmental parameters.

Metrics

Metrics Loading ...

References

R. J. H. Beverton and S. J. Holt. On the Dynamics of Exploited Fish Populations, volume 19 of Fisheries Investigation Series 2. Ministry of Agriculture, Fisheries and Food,eLondon, 1957.

D. J. Borror, D. M. Delong, and C. A. Triplehom. An Introduction to the Study of Insects. Holt, Rinehart, and Winston, fourth edition, 1976.

F. Brauer and C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology, volume 40 of Texts in applied mathematics. Springer, 2001.

C.-H. Chiu. Lyapunov functions for the global stability of competing predators. Journal of Mathematical Analysis and Applications, 230: 232-241, 1999. https://doi.org/10.1006/jmaa.1998.6198

C. W. Clark. Mathematical Bioeconomics. John Wiley & Sons, second edition, 1990.

J. M. Cuevas, A. Moya, and S. F. Elena. Evolution of rna virus in spatially heterogenous environments. J. Evol. Biol., 16: 456-466, 2003. https://doi.org/10.1046/j.1420-9101.2003.00547.x

J. M. Cushing, B. Dennis, R. A. Desharnais, and R. F. Costantino. An interdisciplinary approach to understanding nonlinear ecological dynamics. Ecological Modelling, 92: 111-119, 1996. https://doi.org/10.1016/0304-3800(95)00170-0

C. Darwin. On the origin of species by means of natural selection. John Murray, London, sixth edition, 1878. Cited from 1917 printing.

E. Domingo, E. Baranowski, C. Escarmis, and F. Sobrino. Foot-and-mouth disease virus. Comparative Immunology, Microbiology & Infectious Diseases, 25:297-308, 2002. https://doi.org/10.1016/S0147-9571(02)00027-9

E. Domingo, C. K. Biebricher, M. Eigen, and J. J. Holland. Quasispecies and RNA Virus Evolution: Principles and Consequences, volume 14 of Molecular biology intelligence unit. Landes Bioscience, 2001

E. Domingo, C. Escarmis, E. Baranowski, C. M. Ruiz-Jarabo, E. Carillo, J. I. Nunez, and F. Sobrino. Evolution of the foot-and-mouth disease virus. Virus Res, 91:47-63, 2003. https://doi.org/10.1016/S0168-1702(02)00259-9

S. Ellner and P. Turchin. Chaos in a noisy world: New methods and evidence from time-series analysis. The American Naturalist, 145(3):343-375, 1995. https://www.jstor.org/stable/2463024

R. A. Fisher. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 1930.

G. F. Gause. The Struggle for Existence. The Williams & Wilkins Company, Baltimore, 1934.

P. J. Green and B. W. Silverman. Nonparametric regression and Generalized Linear Models, volume 58 of Monographs on Statistics and Applied Probability. Chapman & Hall, 1994.

J. P. Grover. Competition, herbivory, and enrichment: nutrient based models for edible and inedible plants. The American Naturalist, 145:746-774, 1995. https://www.jstor.org/stable/2462999

J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.

M. Gyllenberg, I. Hanski, and T. Lindström. A predator-prey model with optimal suppression of reproduction in the prey. Mathematical Biosciences, 134: 119-152, 1996. https://doi.org/10.1016/0025-5564(95)00082-8

M. Gyllenberg, I. Hanski, and T. Lindström. Continuous versus discrete single species population models with adjustable reproductive strategies. Bulletin of Mathematical Biology, 59(4):679-705, 1997. https://doi.org/10.1007/BF02458425

M. Gyllenberg, K. Parvinen, and U. Dieckmann. Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology, 45:79- 105, 2002 https://doi.org/10.1007/s002850200151

I. Hanski, L. Hansson, and H. Henttonen. Specialist predators, generalist predators, and the microtine rodent cycle. Journal of Animal Ecology, 60:353-367, 1991. https://doi.org/10.2307/5465

G. Hardin. The competitive exclusion principle. Science, 131: 1292-1297, 1960. https://doi.org/ 10.1126/science.131.3409.1292

M. P. Hassell. The Dynamics of Competition and Predation. The Camelot Press Ltd, Southampton, 1976.

A. Hassen, K. Belguith, N. Jedidi, A. Cherif, M. Cherif, and A. Boudabous. Microbial characterization during composting of municipal solid waste. Bioresource

technology, 80:217-225, 2001 https://doi.org/10.1016/S0960-8524(01)00065-7

J. Hofbauer, K. Sigmund. The theory of evolution and dynamical systems. Cambridge University Press, Cambridge, 1988.

C. S. Holling. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91(7):385-398, 1959. https://doi.org/10.4039/Ent91385-7

S. B. Hsu, S. P. Hubbell, and P. Waltman. Competing predators. SIAM Journal of Applied Mathematics, 35(4):617--625, 1978.

J. Huisman and F. J. Weissing. Biodiversity of plankton by species oscillations and chaos. Nature, 402:407-410, 1999. https://doi.org/10.1038/46540

G. E. Hutchinson. The paradox of plankton. The American Naturalist, 95: 137-145, 1961. https://www.jstor.org/stable/2458386

J. P. Keener. Oscillatory coexistence in the chemostat. SIAM Journal of Applied Mathematics, 43(5):1005-1018, 1983.https://doi.org/10.1137/0143066

B. W. Kooi, M, P. Boer, and S. A. L. M. Kooijman. On the use of the logistic equation in models of food chain. Bulletin of Mathematical Biology, 60:231-246, 1998. https://doi.org/10.1006/bulm.1997.0016

Y. Kuang and H. I. Freedman. Uniqueness of limit cycles in Gause-type models of predator-prey systems. Mathematical Biosciences, 88:67-84, 1988, https://doi.org/10.1016/0025-5564(88)90049-1

Y. A. Kuznetsov, O. De Feo, and S. Rinaldi. Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM Journal of Applied Mathematics, 62(2):462-487, 2001. https://doi.org/10.1137/S0036139900378542

T. Lindström. A generalized uniqueness theorem for limit cycles in a predator-prey system. Acta Academiae Aboensis, Ser B, 49(2): 1-9, 1989.

T. Lindström. Dependencies between competition and predation - and their consequences for initial value sensitivity. SIAM Journal of Applied Mathematics. 59(4): 1468-1486, 1999. https://doi.org/10.1137/S0036139997320858

T. Lindström. Global stability of a model for competing predators: the Ardito & Ricciardi Lyapunov functional. Nonlinear Analysis, 39:793-805, 2000. https://doi.org/10.1016/S0362-546X(98)00238-7

T. Lindström. On the dynamics of discrete food-chains: Low- and high-frequency behavior and chaos. Journal of Mathematical Biology, 45:396-418, 2002. https://doi.org/10.1007/s002850200154

T. Lindstrom. Discrete models and fisher's maximum principle in ecology. In Discrete and Continuous Dynamical Systems, Expanded volume, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24-27, 2002, Wilmington, NC, USA, to appear 2003.

A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, 1925.

A. J. Lotka. The growth of mixed populations: Two species competing for a common food supply. Journal of the Washington Academy of Sciences, 22:46 1-469, 1932. www.jstor.org/stable/24530449.

E. M. Lungu and B. Öksendal. Optimal harvesting from a population in a stochastic crowded environment. Mathematical Biosciences, 145:47-75, 1997. https://doi.org/10.1016/S0025-5564(97)00029-1

T. R. Malthus. An essay on the principle of population (and: A summary view of the principle of population. Penguin, Harmondsworth, Middlesex, 1798, 1970.

R. McGehee and R. A. Armstrong. Some mathematical problems concerning the ecological principle of competitive exclusion, Journal of Differential Equations, 23:30- 52, 1977. https://doi.org/10.1016/0022-0396(77)90135-8

J. A. J. Metz and 0. Diekmann. The Dynamics of Physiologically Structured Populations. Springer-Verlag, 1986

A. P. Miller and N. L. Clesceri. Waste sites as biological reactors: Characterization and modelling. Kinetics of Decomposition of wastes, pages 229-290. Lewis Publishers, CRC Press LLC, 2003.

W. F. Morris. Problems in detecting chaotic behavior in natural populations by fitting simple discrete models. Ecology, 71 (5): 1849-1862, 1990. https://doi.org/10.2307/1937593

A. Moya, S, F, Elena, A. Bracho, R. Miralles, and E. Barrio. The evolution of RNA viruses: A population genetics view. Proceedings of the National Academy of Sciences of the United States of America, 96:6967-6973, 2000.

S. Muratori and S. Rinaldi. Remarks on competitive coexistence. SIAM Journal of Applied Mathematics, 49(5):1462-1472, 1989. https://www.jstor.org/stable/2102032

I. Nåsell. Extinction and quasi-statinarity in the Verhulst logistic model. Journal of Theoretical Biology, 211(1):11-27, 2001. https://doi.org/10.1006/jtbi.2001.2328

A. H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. John Wiley & Sons, 1995.

S. N. Newhouse. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Pub!. Math. IHES, 50: 349-399, 1979.

A. J. Nicholson. An outline of the dynamics of animal populations. Australian Journal of Zoology, 2:9-65, 1954. https://doi.org/10.1071/ZO9540009

L. Oksanen, S. D. Fretwell, J. Arruda, and P. Niemela. Exploitation ecosystems in gradients of primary productivity. The American Naturalist, 118(2):240-261, 1981. https://www.jstor.org/stable/2460513

A. V. Osipov, G. Soderbacka, and T. Eirola. On the appearance of chaotic solutions in a dynamical system of two predators - one prey type. Actual Problems in Contemporary Mathematics, I : 39-70, 1996. ISBN 5-7320-042 l-l, in Russian, English abstract.

A. Rambaut, D. Posala, K. A. Crandall, and E. C. Holmes. The causes and consequences of hiv evolution. Nature Reviews Genetics, 5:52-61, 2004. https://doi.org/10.1038/nrg1246

W. E. Ricker. Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11 (5):559-623, 1954. https://doi.org/10.1139/f54-039

R. Riegman and B. R. Kuipers. Resource competition and selective grazing of plankton in a multispecies pelagic food web model. Mar. Ecol., 15: 153-164, 1994. https://doi.org/10.1111/j.1439-0485.1994.tb00050.x

M. Romantschuk, I. Sarand, , T. Petii.nen, R. Peltola, M. Jonsson-Vihanne, T. Kuivula, K. Yrjiilii., and K. Haahtela. Means to improve the effect of insitu bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution, 107:179-185, 2000. https://doi.org/10.1016/S0269-7491(99)00136-0

I. M. Rouzine and J. M. Coffin. Interplay between experiment and theory in devepoment of a working model for hiv population dynamics. In E. Domingo, R. Webster, and J. Holland, editors, Origin and Evolution af viruses, pages 225-285. Academic Press, San Diego, 1999.

I. M. Rouzine, A. G. Rodrigo, and J. M. Coffin. Transition between stochastic evolution and deterministic evolution in the presence of selection. Microbiol. Mol. Biol. Rev. , 65: 151-185, 2001 https://doi.org/10.1128/MMBR.65.1.151-185.2001

T. Saitoh, N. C. Stenseth, and 0. N. Björnstad. Density dependence in fluctuating grey-sided vole populations. Journal of Animal Ecology, 66: 14-24, 1997. https://doi.org/10.2307/5960

M. Scheffer, S. Rinaldi, J. Huisman, and F. J. Wiessing. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia, 491:9-18, 2003. https://doi.org/10.1023/A:1024404804748

P. D. Schloss, A.eG. Hay, D. B. Wilson, and L. P. Walker. Source tracking temporal changes of bacterial community fingerprints during initial states of composting. FEMS Microbiology Ecology, 46: 1 -9, 2003 https://doi.org/10.1016/S0168-6496(03)00153-3

S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20:7-15, 1998. https://doi.org/10.1007/BF03025291

N. C. Stenseth, W. Falck, O. Björnstad, and C. J. Krebs. Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proceedings of the National Academy of Sciences of the United States of America, 94:51 47-5152, 1997. ttps://doi.org/10.1073/pnas.94.10.5147

W. Stolte and R. Riegman. A model approach for size-selective competition of marine phytoplankton for fluctuating nitrate and ammonium. J. Phycol. , 32:732-740, 1996. https://doi.org/10.1111/j.0022-3646.1996.00732.x

G. Sugihara and R. M. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741, 1990. https://doi.org/10.1038/344734a0

F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S. Young, editors, Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics 898, pages 366-381. Springer-Verlag, 1981. https://doi.org/10.1007/BFb0091924

D. Tilman. Resourse competition and community structure, volume 17. Princeton University Press, Princeton, New Jersey, 1982.

S. Utida. Population fluctuation, an experimental and theoretical approach. Cold Spring Harbor Symposia on Quantitative Biology, 22: 139-151, 1957. https://doi.org/10.1101/SQB.1957.022.01.016

M. H. Vellekoop and G. Hogniis. A unifying framework for chaos and stochastic stability in discrete population models. Journal of Mathematical Biology, 35:557- 588, 1997. https://doi.org/10.1007/s002850050066

V. Volterra. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memorie della R. Accademia Nationale dei Lincei 6, 2:31-1 13, 1926.

P. Waltman. A brief survey of persistence in dynamical systems. Springer Lecture notes in Mathematics, 1475: 31-40, 1992 https://doi.org/10.1007/BFb0083477

Downloads

Published

2019-07-03